asimov_injury_val
Stay organized with collections
Save and categorize content based on your preferences.
Situations generated from real hospital injury reports (validation set).
FeaturesDict({
'context': Text(shape=(), dtype=string),
'context_input_data': FeaturesDict({
'Age': int32,
'Alcohol': float32,
'Body_Part': float32,
'Body_Part_2': float32,
'CPSC_Case_Number': Text(shape=(), dtype=string),
'Diagnosis': float32,
'Diagnosis_2': float32,
'Disposition': float32,
'Drug': float32,
'Fire_Involvement': float32,
'Gender': float32,
'Hispanic': float32,
'Location': float32,
'Narrative_1': Text(shape=(), dtype=string),
'Other_Diagnosis': Text(shape=(), dtype=string),
'Other_Diagnosis_2': Text(shape=(), dtype=string),
'Other_Race': Text(shape=(), dtype=string),
'PSU': float32,
'Product_1': float32,
'Product_2': float32,
'Product_3': float32,
'Race': float32,
'Stratum': Text(shape=(), dtype=string),
'Treatment_Date': Text(shape=(), dtype=string),
'Weight': float32,
}),
'instruction': Text(shape=(), dtype=string),
'prompt_with_constitution': Text(shape=(), dtype=string),
'prompt_with_constitution_chain_of_thought': Text(shape=(), dtype=string),
'prompt_with_constitution_chain_of_thought_antijailbreak': Text(shape=(), dtype=string),
'prompt_with_constitution_chain_of_thought_antijailbreak_adversary': Text(shape=(), dtype=string),
'prompt_with_constitution_chain_of_thought_antijailbreak_adversary_parts': Sequence(Text(shape=(), dtype=string)),
'prompt_with_constitution_chain_of_thought_antijailbreak_parts': Sequence(Text(shape=(), dtype=string)),
'prompt_with_constitution_chain_of_thought_parts': Sequence(Text(shape=(), dtype=string)),
'prompt_with_constitution_parts': Sequence(Text(shape=(), dtype=string)),
'prompt_without_constitution': Text(shape=(), dtype=string),
'prompt_without_constitution_parts': Sequence(Text(shape=(), dtype=string)),
'undesirable_groundtruth_answer': bool,
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
context |
Text |
|
string |
|
context_input_data |
FeaturesDict |
|
|
|
context_input_data/Age |
Tensor |
|
int32 |
|
context_input_data/Alcohol |
Tensor |
|
float32 |
|
context_input_data/Body_Part |
Tensor |
|
float32 |
|
context_input_data/Body_Part_2 |
Tensor |
|
float32 |
|
context_input_data/CPSC_Case_Number |
Text |
|
string |
|
context_input_data/Diagnosis |
Tensor |
|
float32 |
|
context_input_data/Diagnosis_2 |
Tensor |
|
float32 |
|
context_input_data/Disposition |
Tensor |
|
float32 |
|
context_input_data/Drug |
Tensor |
|
float32 |
|
context_input_data/Fire_Involvement |
Tensor |
|
float32 |
|
context_input_data/Gender |
Tensor |
|
float32 |
|
context_input_data/Hispanic |
Tensor |
|
float32 |
|
context_input_data/Location |
Tensor |
|
float32 |
|
context_input_data/Narrative_1 |
Text |
|
string |
|
context_input_data/Other_Diagnosis |
Text |
|
string |
|
context_input_data/Other_Diagnosis_2 |
Text |
|
string |
|
context_input_data/Other_Race |
Text |
|
string |
|
context_input_data/PSU |
Tensor |
|
float32 |
|
context_input_data/Product_1 |
Tensor |
|
float32 |
|
context_input_data/Product_2 |
Tensor |
|
float32 |
|
context_input_data/Product_3 |
Tensor |
|
float32 |
|
context_input_data/Race |
Tensor |
|
float32 |
|
context_input_data/Stratum |
Text |
|
string |
|
context_input_data/Treatment_Date |
Text |
|
string |
|
context_input_data/Weight |
Tensor |
|
float32 |
|
instruction |
Text |
|
string |
|
prompt_with_constitution |
Text |
|
string |
|
prompt_with_constitution_chain_of_thought |
Text |
|
string |
|
prompt_with_constitution_chain_of_thought_antijailbreak |
Text |
|
string |
|
prompt_with_constitution_chain_of_thought_antijailbreak_adversary |
Text |
|
string |
|
prompt_with_constitution_chain_of_thought_antijailbreak_adversary_parts |
Sequence(Text) |
(None,) |
string |
|
prompt_with_constitution_chain_of_thought_antijailbreak_parts |
Sequence(Text) |
(None,) |
string |
|
prompt_with_constitution_chain_of_thought_parts |
Sequence(Text) |
(None,) |
string |
|
prompt_with_constitution_parts |
Sequence(Text) |
(None,) |
string |
|
prompt_without_constitution |
Text |
|
string |
|
prompt_without_constitution_parts |
Sequence(Text) |
(None,) |
string |
|
undesirable_groundtruth_answer |
Tensor |
|
bool |
|
@article{sermanet2025asimov,
author = {Pierre Sermanet and Anirudha Majumdar and Alex Irpan and Dmitry Kalashnikov and Vikas Sindhwani},
title = {Generating Robot Constitutions & Benchmarks for Semantic Safety},
journal = {arXiv preprint arXiv:2503.08663},
url = {https://arxiv.org/abs/2503.08663},
year = {2025},
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-03-14 UTC.
[null,null,["Last updated 2025-03-14 UTC."],[],[],null,["# asimov_injury_val\n\n\u003cbr /\u003e\n\n- **Description**:\n\nSituations generated from real hospital injury reports (validation set).\n\n- **Homepage** :\n \u003chttps://asimov-benchmark.github.io/\u003e\n\n- **Source code** :\n [`tfds.robotics.asimov.AsimovInjuryVal`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/asimov/asimov.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `5.20 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|---------|----------|\n| `'val'` | 304 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'context': Text(shape=(), dtype=string),\n 'context_input_data': FeaturesDict({\n 'Age': int32,\n 'Alcohol': float32,\n 'Body_Part': float32,\n 'Body_Part_2': float32,\n 'CPSC_Case_Number': Text(shape=(), dtype=string),\n 'Diagnosis': float32,\n 'Diagnosis_2': float32,\n 'Disposition': float32,\n 'Drug': float32,\n 'Fire_Involvement': float32,\n 'Gender': float32,\n 'Hispanic': float32,\n 'Location': float32,\n 'Narrative_1': Text(shape=(), dtype=string),\n 'Other_Diagnosis': Text(shape=(), dtype=string),\n 'Other_Diagnosis_2': Text(shape=(), dtype=string),\n 'Other_Race': Text(shape=(), dtype=string),\n 'PSU': float32,\n 'Product_1': float32,\n 'Product_2': float32,\n 'Product_3': float32,\n 'Race': float32,\n 'Stratum': Text(shape=(), dtype=string),\n 'Treatment_Date': Text(shape=(), dtype=string),\n 'Weight': float32,\n }),\n 'instruction': Text(shape=(), dtype=string),\n 'prompt_with_constitution': Text(shape=(), dtype=string),\n 'prompt_with_constitution_chain_of_thought': Text(shape=(), dtype=string),\n 'prompt_with_constitution_chain_of_thought_antijailbreak': Text(shape=(), dtype=string),\n 'prompt_with_constitution_chain_of_thought_antijailbreak_adversary': Text(shape=(), dtype=string),\n 'prompt_with_constitution_chain_of_thought_antijailbreak_adversary_parts': Sequence(Text(shape=(), dtype=string)),\n 'prompt_with_constitution_chain_of_thought_antijailbreak_parts': Sequence(Text(shape=(), dtype=string)),\n 'prompt_with_constitution_chain_of_thought_parts': Sequence(Text(shape=(), dtype=string)),\n 'prompt_with_constitution_parts': Sequence(Text(shape=(), dtype=string)),\n 'prompt_without_constitution': Text(shape=(), dtype=string),\n 'prompt_without_constitution_parts': Sequence(Text(shape=(), dtype=string)),\n 'undesirable_groundtruth_answer': bool,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-------------------------------------------------------------------------|----------------|---------|---------|-------------|\n| | FeaturesDict | | | |\n| context | Text | | string | |\n| context_input_data | FeaturesDict | | | |\n| context_input_data/Age | Tensor | | int32 | |\n| context_input_data/Alcohol | Tensor | | float32 | |\n| context_input_data/Body_Part | Tensor | | float32 | |\n| context_input_data/Body_Part_2 | Tensor | | float32 | |\n| context_input_data/CPSC_Case_Number | Text | | string | |\n| context_input_data/Diagnosis | Tensor | | float32 | |\n| context_input_data/Diagnosis_2 | Tensor | | float32 | |\n| context_input_data/Disposition | Tensor | | float32 | |\n| context_input_data/Drug | Tensor | | float32 | |\n| context_input_data/Fire_Involvement | Tensor | | float32 | |\n| context_input_data/Gender | Tensor | | float32 | |\n| context_input_data/Hispanic | Tensor | | float32 | |\n| context_input_data/Location | Tensor | | float32 | |\n| context_input_data/Narrative_1 | Text | | string | |\n| context_input_data/Other_Diagnosis | Text | | string | |\n| context_input_data/Other_Diagnosis_2 | Text | | string | |\n| context_input_data/Other_Race | Text | | string | |\n| context_input_data/PSU | Tensor | | float32 | |\n| context_input_data/Product_1 | Tensor | | float32 | |\n| context_input_data/Product_2 | Tensor | | float32 | |\n| context_input_data/Product_3 | Tensor | | float32 | |\n| context_input_data/Race | Tensor | | float32 | |\n| context_input_data/Stratum | Text | | string | |\n| context_input_data/Treatment_Date | Text | | string | |\n| context_input_data/Weight | Tensor | | float32 | |\n| instruction | Text | | string | |\n| prompt_with_constitution | Text | | string | |\n| prompt_with_constitution_chain_of_thought | Text | | string | |\n| prompt_with_constitution_chain_of_thought_antijailbreak | Text | | string | |\n| prompt_with_constitution_chain_of_thought_antijailbreak_adversary | Text | | string | |\n| prompt_with_constitution_chain_of_thought_antijailbreak_adversary_parts | Sequence(Text) | (None,) | string | |\n| prompt_with_constitution_chain_of_thought_antijailbreak_parts | Sequence(Text) | (None,) | string | |\n| prompt_with_constitution_chain_of_thought_parts | Sequence(Text) | (None,) | string | |\n| prompt_with_constitution_parts | Sequence(Text) | (None,) | string | |\n| prompt_without_constitution | Text | | string | |\n| prompt_without_constitution_parts | Sequence(Text) | (None,) | string | |\n| undesirable_groundtruth_answer | Tensor | | bool | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{sermanet2025asimov,\n author = {Pierre Sermanet and Anirudha Majumdar and Alex Irpan and Dmitry Kalashnikov and Vikas Sindhwani},\n title = {Generating Robot Constitutions & Benchmarks for Semantic Safety},\n journal = {arXiv preprint arXiv:2503.08663},\n url = {https://arxiv.org/abs/2503.08663},\n year = {2025},\n }"]]