bigearthnet
Stay organized with collections
Save and categorize content based on your preferences.
The BigEarthNet is a new large-scale Sentinel-2 benchmark archive, consisting of
590,326 Sentinel-2 image patches. The image patch size on the ground is 1.2 x
1.2 km with variable image size depending on the channel resolution. This is a
multi-label dataset with 43 imbalanced labels.
To construct the BigEarthNet, 125 Sentinel-2 tiles acquired between June 2017
and May 2018 over the 10 countries (Austria, Belgium, Finland, Ireland, Kosovo,
Lithuania, Luxembourg, Portugal, Serbia, Switzerland) of Europe were initially
selected. All the tiles were atmospherically corrected by the Sentinel-2 Level
2A product generation and formatting tool (sen2cor). Then, they were divided
into 590,326 non-overlapping image patches. Each image patch was annotated by
the multiple land-cover classes (i.e., multi-labels) that were provided from the
CORINE Land Cover database of the year 2018 (CLC 2018).
Bands and pixel resolution in meters:
- B01: Coastal aerosol; 60m
- B02: Blue; 10m
- B03: Green; 10m
- B04: Red; 10m
- B05: Vegetation red edge; 20m
- B06: Vegetation red edge; 20m
- B07: Vegetation red edge; 20m
- B08: NIR; 10m
- B09: Water vapor; 60m
- B11: SWIR; 20m
- B12: SWIR; 20m
- B8A: Narrow NIR; 20m
License: Community Data License Agreement - Permissive, Version 1.0.
URL: http://bigearth.net/
Split |
Examples |
'train' |
590,326 |
@article{Sumbul2019BigEarthNetAL,
title={BigEarthNet: A Large-Scale Benchmark Archive For Remote Sensing Image Understanding},
author={Gencer Sumbul and Marcela Charfuelan and Beg{"u}m Demir and Volker Markl},
journal={CoRR},
year={2019},
volume={abs/1902.06148}
}
bigearthnet/rgb (default config)
FeaturesDict({
'filename': Text(shape=(), dtype=string),
'image': Image(shape=(120, 120, 3), dtype=uint8),
'labels': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=43)),
'metadata': FeaturesDict({
'acquisition_date': Text(shape=(), dtype=string),
'coordinates': FeaturesDict({
'lrx': int64,
'lry': int64,
'ulx': int64,
'uly': int64,
}),
'projection': Text(shape=(), dtype=string),
'tile_source': Text(shape=(), dtype=string),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
filename |
Text |
|
string |
|
image |
Image |
(120, 120, 3) |
uint8 |
|
labels |
Sequence(ClassLabel) |
(None,) |
int64 |
|
metadata |
FeaturesDict |
|
|
|
metadata/acquisition_date |
Text |
|
string |
|
metadata/coordinates |
FeaturesDict |
|
|
|
metadata/coordinates/lrx |
Tensor |
|
int64 |
|
metadata/coordinates/lry |
Tensor |
|
int64 |
|
metadata/coordinates/ulx |
Tensor |
|
int64 |
|
metadata/coordinates/uly |
Tensor |
|
int64 |
|
metadata/projection |
Text |
|
string |
|
metadata/tile_source |
Text |
|
string |
|

bigearthnet/all
FeaturesDict({
'B01': Tensor(shape=(20, 20), dtype=float32),
'B02': Tensor(shape=(120, 120), dtype=float32),
'B03': Tensor(shape=(120, 120), dtype=float32),
'B04': Tensor(shape=(120, 120), dtype=float32),
'B05': Tensor(shape=(60, 60), dtype=float32),
'B06': Tensor(shape=(60, 60), dtype=float32),
'B07': Tensor(shape=(60, 60), dtype=float32),
'B08': Tensor(shape=(120, 120), dtype=float32),
'B09': Tensor(shape=(20, 20), dtype=float32),
'B11': Tensor(shape=(60, 60), dtype=float32),
'B12': Tensor(shape=(60, 60), dtype=float32),
'B8A': Tensor(shape=(60, 60), dtype=float32),
'filename': Text(shape=(), dtype=string),
'labels': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=43)),
'metadata': FeaturesDict({
'acquisition_date': Text(shape=(), dtype=string),
'coordinates': FeaturesDict({
'lrx': int64,
'lry': int64,
'ulx': int64,
'uly': int64,
}),
'projection': Text(shape=(), dtype=string),
'tile_source': Text(shape=(), dtype=string),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
B01 |
Tensor |
(20, 20) |
float32 |
|
B02 |
Tensor |
(120, 120) |
float32 |
|
B03 |
Tensor |
(120, 120) |
float32 |
|
B04 |
Tensor |
(120, 120) |
float32 |
|
B05 |
Tensor |
(60, 60) |
float32 |
|
B06 |
Tensor |
(60, 60) |
float32 |
|
B07 |
Tensor |
(60, 60) |
float32 |
|
B08 |
Tensor |
(120, 120) |
float32 |
|
B09 |
Tensor |
(20, 20) |
float32 |
|
B11 |
Tensor |
(60, 60) |
float32 |
|
B12 |
Tensor |
(60, 60) |
float32 |
|
B8A |
Tensor |
(60, 60) |
float32 |
|
filename |
Text |
|
string |
|
labels |
Sequence(ClassLabel) |
(None,) |
int64 |
|
metadata |
FeaturesDict |
|
|
|
metadata/acquisition_date |
Text |
|
string |
|
metadata/coordinates |
FeaturesDict |
|
|
|
metadata/coordinates/lrx |
Tensor |
|
int64 |
|
metadata/coordinates/lry |
Tensor |
|
int64 |
|
metadata/coordinates/ulx |
Tensor |
|
int64 |
|
metadata/coordinates/uly |
Tensor |
|
int64 |
|
metadata/projection |
Text |
|
string |
|
metadata/tile_source |
Text |
|
string |
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# bigearthnet\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe BigEarthNet is a new large-scale Sentinel-2 benchmark archive, consisting of\n590,326 Sentinel-2 image patches. The image patch size on the ground is 1.2 x\n1.2 km with variable image size depending on the channel resolution. This is a\nmulti-label dataset with 43 imbalanced labels.\n\nTo construct the BigEarthNet, 125 Sentinel-2 tiles acquired between June 2017\nand May 2018 over the 10 countries (Austria, Belgium, Finland, Ireland, Kosovo,\nLithuania, Luxembourg, Portugal, Serbia, Switzerland) of Europe were initially\nselected. All the tiles were atmospherically corrected by the Sentinel-2 Level\n2A product generation and formatting tool (sen2cor). Then, they were divided\ninto 590,326 non-overlapping image patches. Each image patch was annotated by\nthe multiple land-cover classes (i.e., multi-labels) that were provided from the\nCORINE Land Cover database of the year 2018 (CLC 2018).\n\nBands and pixel resolution in meters:\n\n- B01: Coastal aerosol; 60m\n- B02: Blue; 10m\n- B03: Green; 10m\n- B04: Red; 10m\n- B05: Vegetation red edge; 20m\n- B06: Vegetation red edge; 20m\n- B07: Vegetation red edge; 20m\n- B08: NIR; 10m\n- B09: Water vapor; 60m\n- B11: SWIR; 20m\n- B12: SWIR; 20m\n- B8A: Narrow NIR; 20m\n\nLicense: Community Data License Agreement - Permissive, Version 1.0.\n\nURL: \u003chttp://bigearth.net/\u003e\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/bigearthnet)\n\n- **Homepage** : \u003chttp://bigearth.net\u003e\n\n- **Source code** :\n [`tfds.datasets.bigearthnet.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/bigearthnet/bigearthnet_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n- **Download size** : `65.22 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 590,326 |\n\n- **Citation**:\n\n @article{Sumbul2019BigEarthNetAL,\n title={BigEarthNet: A Large-Scale Benchmark Archive For Remote Sensing Image Understanding},\n author={Gencer Sumbul and Marcela Charfuelan and Beg{\"u}m Demir and Volker Markl},\n journal={CoRR},\n year={2019},\n volume={abs/1902.06148}\n }\n\nbigearthnet/rgb (default config)\n--------------------------------\n\n- **Config description**: Sentinel-2 RGB channels\n\n- **Dataset size** : `14.07 GiB`\n\n- **Feature structure**:\n\n FeaturesDict({\n 'filename': Text(shape=(), dtype=string),\n 'image': Image(shape=(120, 120, 3), dtype=uint8),\n 'labels': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=43)),\n 'metadata': FeaturesDict({\n 'acquisition_date': Text(shape=(), dtype=string),\n 'coordinates': FeaturesDict({\n 'lrx': int64,\n 'lry': int64,\n 'ulx': int64,\n 'uly': int64,\n }),\n 'projection': Text(shape=(), dtype=string),\n 'tile_source': Text(shape=(), dtype=string),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------------------------|----------------------|---------------|--------|-------------|\n| | FeaturesDict | | | |\n| filename | Text | | string | |\n| image | Image | (120, 120, 3) | uint8 | |\n| labels | Sequence(ClassLabel) | (None,) | int64 | |\n| metadata | FeaturesDict | | | |\n| metadata/acquisition_date | Text | | string | |\n| metadata/coordinates | FeaturesDict | | | |\n| metadata/coordinates/lrx | Tensor | | int64 | |\n| metadata/coordinates/lry | Tensor | | int64 | |\n| metadata/coordinates/ulx | Tensor | | int64 | |\n| metadata/coordinates/uly | Tensor | | int64 | |\n| metadata/projection | Text | | string | |\n| metadata/tile_source | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'labels')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nbigearthnet/all\n---------------\n\n- **Config description**: 13 Sentinel-2 channels\n\n- **Dataset size** : `176.63 GiB`\n\n- **Feature structure**:\n\n FeaturesDict({\n 'B01': Tensor(shape=(20, 20), dtype=float32),\n 'B02': Tensor(shape=(120, 120), dtype=float32),\n 'B03': Tensor(shape=(120, 120), dtype=float32),\n 'B04': Tensor(shape=(120, 120), dtype=float32),\n 'B05': Tensor(shape=(60, 60), dtype=float32),\n 'B06': Tensor(shape=(60, 60), dtype=float32),\n 'B07': Tensor(shape=(60, 60), dtype=float32),\n 'B08': Tensor(shape=(120, 120), dtype=float32),\n 'B09': Tensor(shape=(20, 20), dtype=float32),\n 'B11': Tensor(shape=(60, 60), dtype=float32),\n 'B12': Tensor(shape=(60, 60), dtype=float32),\n 'B8A': Tensor(shape=(60, 60), dtype=float32),\n 'filename': Text(shape=(), dtype=string),\n 'labels': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=43)),\n 'metadata': FeaturesDict({\n 'acquisition_date': Text(shape=(), dtype=string),\n 'coordinates': FeaturesDict({\n 'lrx': int64,\n 'lry': int64,\n 'ulx': int64,\n 'uly': int64,\n }),\n 'projection': Text(shape=(), dtype=string),\n 'tile_source': Text(shape=(), dtype=string),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------------------------|----------------------|------------|---------|-------------|\n| | FeaturesDict | | | |\n| B01 | Tensor | (20, 20) | float32 | |\n| B02 | Tensor | (120, 120) | float32 | |\n| B03 | Tensor | (120, 120) | float32 | |\n| B04 | Tensor | (120, 120) | float32 | |\n| B05 | Tensor | (60, 60) | float32 | |\n| B06 | Tensor | (60, 60) | float32 | |\n| B07 | Tensor | (60, 60) | float32 | |\n| B08 | Tensor | (120, 120) | float32 | |\n| B09 | Tensor | (20, 20) | float32 | |\n| B11 | Tensor | (60, 60) | float32 | |\n| B12 | Tensor | (60, 60) | float32 | |\n| B8A | Tensor | (60, 60) | float32 | |\n| filename | Text | | string | |\n| labels | Sequence(ClassLabel) | (None,) | int64 | |\n| metadata | FeaturesDict | | | |\n| metadata/acquisition_date | Text | | string | |\n| metadata/coordinates | FeaturesDict | | | |\n| metadata/coordinates/lrx | Tensor | | int64 | |\n| metadata/coordinates/lry | Tensor | | int64 | |\n| metadata/coordinates/ulx | Tensor | | int64 | |\n| metadata/coordinates/uly | Tensor | | int64 | |\n| metadata/projection | Text | | string | |\n| metadata/tile_source | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]