bool_q
Stay organized with collections
Save and categorize content based on your preferences.
BoolQ is a question answering dataset for yes/no questions containing 15942
examples. These questions are naturally occurring, they are generated in
unprompted and unconstrained settings.
Each example is a triplet of (question, passage, answer), with the title of the
page as optional additional context. The text-pair classification setup is
similar to existing natural language inference tasks.
Split |
Examples |
'train' |
9,427 |
'validation' |
3,270 |
FeaturesDict({
'answer': bool,
'passage': Text(shape=(), dtype=string),
'question': Text(shape=(), dtype=string),
'title': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
answer |
Tensor |
|
bool |
|
passage |
Text |
|
string |
|
question |
Text |
|
string |
|
title |
Text |
|
string |
|
@inproceedings{clark2019boolq,
title = {BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions},
author = {Clark, Christopher and Lee, Kenton and Chang, Ming-Wei, and Kwiatkowski, Tom and Collins, Michael, and Toutanova, Kristina},
booktitle = {NAACL},
year = {2019},
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[null,null,["Last updated 2022-12-06 UTC."],[],[],null,["# bool_q\n\n\u003cbr /\u003e\n\n- **Description**:\n\nBoolQ is a question answering dataset for yes/no questions containing 15942\nexamples. These questions are naturally occurring, they are generated in\nunprompted and unconstrained settings.\n\nEach example is a triplet of (question, passage, answer), with the title of the\npage as optional additional context. The text-pair classification setup is\nsimilar to existing natural language inference tasks.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/boolq)\n\n- **Homepage** :\n \u003chttps://github.com/google-research-datasets/boolean-questions\u003e\n\n- **Source code** :\n [`tfds.datasets.bool_q.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/bool_q/bool_q_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `8.36 MiB`\n\n- **Dataset size** : `8.51 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'train'` | 9,427 |\n| `'validation'` | 3,270 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'answer': bool,\n 'passage': Text(shape=(), dtype=string),\n 'question': Text(shape=(), dtype=string),\n 'title': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| answer | Tensor | | bool | |\n| passage | Text | | string | |\n| question | Text | | string | |\n| title | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{clark2019boolq,\n title = {BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions},\n author = {Clark, Christopher and Lee, Kenton and Chang, Ming-Wei, and Kwiatkowski, Tom and Collins, Michael, and Toutanova, Kristina},\n booktitle = {NAACL},\n year = {2019},\n }"]]