clic
Stay organized with collections
Save and categorize content based on your preferences.
CLIC is a dataset for the Challenge on Learned Image Compression 2020 lossy
image compression track. These images contain a mix of the professional and
mobile datasets used to train and benchmark rate-distortion performance. The
dataset contains both RGB and grayscale images. This may require special
handling if a grayscale image is processed as a 1 channel Tensor and a 3 channel
Tensor is expected.
This dataset does NOT contain the data from the P-Frame challenge (YUV image
frames).
Split |
Examples |
'test' |
428 |
'train' |
1,633 |
'validation' |
102 |
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(None, None, 3) |
uint8 |
|

@misc{CLIC2020,
title = {Workshop and Challenge on Learned Image Compression (CLIC2020)},
author = {George Toderici, Wenzhe Shi, Radu Timofte, Lucas Theis,
Johannes Balle, Eirikur Agustsson, Nick Johnston, Fabian Mentzer},
url = {http://www.compression.cc},
year={2020},
organization={CVPR}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# clic\n\n\u003cbr /\u003e\n\n- **Description**:\n\nCLIC is a dataset for the Challenge on Learned Image Compression 2020 lossy\nimage compression track. These images contain a mix of the professional and\nmobile datasets used to train and benchmark rate-distortion performance. The\ndataset contains both RGB and grayscale images. This may require special\nhandling if a grayscale image is processed as a 1 channel Tensor and a 3 channel\nTensor is expected.\n\nThis dataset does *NOT* contain the data from the P-Frame challenge (YUV image\nframes).\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/clic)\n\n- **Homepage** : \u003chttps://www.compression.cc/\u003e\n\n- **Source code** :\n [`tfds.datasets.clic.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/clic/clic_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `7.48 GiB`\n\n- **Dataset size** : `7.48 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 428 |\n| `'train'` | 1,633 |\n| `'validation'` | 102 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------|--------------|-----------------|-------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (None, None, 3) | uint8 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @misc{CLIC2020,\n title = {Workshop and Challenge on Learned Image Compression (CLIC2020)},\n author = {George Toderici, Wenzhe Shi, Radu Timofte, Lucas Theis,\n Johannes Balle, Eirikur Agustsson, Nick Johnston, Fabian Mentzer},\n url = {http://www.compression.cc},\n year={2020},\n organization={CVPR}\n }"]]