cosmos_qa
Stay organized with collections
Save and categorize content based on your preferences.
Cosmos QA is a large-scale dataset of 35.6K problems that require
commonsense-based reading comprehension, formulated as multiple-choice
questions. It focuses on reading between the lines over a diverse collection of
people's everyday narratives, asking questions concerning on the likely causes
or effects of events that require reasoning beyond the exact text spans in the
context.
Split |
Examples |
'test' |
6,963 |
'train' |
25,262 |
'validation' |
2,985 |
FeaturesDict({
'answer0': Text(shape=(), dtype=string),
'answer1': Text(shape=(), dtype=string),
'answer2': Text(shape=(), dtype=string),
'answer3': Text(shape=(), dtype=string),
'context': Text(shape=(), dtype=string),
'id': Text(shape=(), dtype=string),
'label': ClassLabel(shape=(), dtype=int64, num_classes=4),
'question': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
answer0 |
Text |
|
string |
|
answer1 |
Text |
|
string |
|
answer2 |
Text |
|
string |
|
answer3 |
Text |
|
string |
|
context |
Text |
|
string |
|
id |
Text |
|
string |
|
label |
ClassLabel |
|
int64 |
|
question |
Text |
|
string |
|
@inproceedings{huang-etal-2019-cosmos,
title = "Cosmos {QA}: Machine Reading Comprehension with Contextual Commonsense Reasoning",
author = "Huang, Lifu and
Le Bras, Ronan and
Bhagavatula, Chandra and
Choi, Yejin",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
year = "2019",
url = "https://www.aclweb.org/anthology/D19-1243"
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[null,null,["Last updated 2022-12-06 UTC."],[],[],null,["# cosmos_qa\n\n\u003cbr /\u003e\n\n- **Description**:\n\nCosmos QA is a large-scale dataset of 35.6K problems that require\ncommonsense-based reading comprehension, formulated as multiple-choice\nquestions. It focuses on reading between the lines over a diverse collection of\npeople's everyday narratives, asking questions concerning on the likely causes\nor effects of events that require reasoning beyond the exact text spans in the\ncontext.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/cosmosqa)\n\n- **Homepage** :\n \u003chttps://wilburone.github.io/cosmos/\u003e\n\n- **Source code** :\n [`tfds.question_answering.CosmosQA`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/question_answering/cosmos_qa.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `23.27 MiB`\n\n- **Dataset size** : `27.09 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 6,963 |\n| `'train'` | 25,262 |\n| `'validation'` | 2,985 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'answer0': Text(shape=(), dtype=string),\n 'answer1': Text(shape=(), dtype=string),\n 'answer2': Text(shape=(), dtype=string),\n 'answer3': Text(shape=(), dtype=string),\n 'context': Text(shape=(), dtype=string),\n 'id': Text(shape=(), dtype=string),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=4),\n 'question': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| answer0 | Text | | string | |\n| answer1 | Text | | string | |\n| answer2 | Text | | string | |\n| answer3 | Text | | string | |\n| context | Text | | string | |\n| id | Text | | string | |\n| label | ClassLabel | | int64 | |\n| question | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{huang-etal-2019-cosmos,\n title = \"Cosmos {QA}: Machine Reading Comprehension with Contextual Commonsense Reasoning\",\n author = \"Huang, Lifu and\n Le Bras, Ronan and\n Bhagavatula, Chandra and\n Choi, Yejin\",\n booktitle = \"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)\",\n year = \"2019\",\n url = \"https://www.aclweb.org/anthology/D19-1243\"\n }"]]