crema_d
Stay organized with collections
Save and categorize content based on your preferences.
CREMA-D is an audio-visual data set for emotion recognition. The data set
consists of facial and vocal emotional expressions in sentences spoken in a
range of basic emotional states (happy, sad, anger, fear, disgust, and neutral).
7,442 clips of 91 actors with diverse ethnic backgrounds were collected. This
release contains only the audio stream from the original audio-visual recording.
The samples are splitted between train, validation and testing so that samples
from each speaker belongs to exactly one split.
Split |
Examples |
'test' |
1,556 |
'train' |
5,144 |
'validation' |
738 |
FeaturesDict({
'audio': Audio(shape=(None,), dtype=int64),
'label': ClassLabel(shape=(), dtype=int64, num_classes=6),
'speaker_id': string,
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
audio |
Audio |
(None,) |
int64 |
|
label |
ClassLabel |
|
int64 |
|
speaker_id |
Tensor |
|
string |
|
@article{cao2014crema,
title={ {CREMA-D}: Crowd-sourced emotional multimodal actors dataset},
author={Cao, Houwei and Cooper, David G and Keutmann, Michael K and Gur, Ruben C and Nenkova, Ani and Verma, Ragini},
journal={IEEE transactions on affective computing},
volume={5},
number={4},
pages={377--390},
year={2014},
publisher={IEEE}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[null,null,["Last updated 2022-12-06 UTC."],[],[],null,["# crema_d\n\n\u003cbr /\u003e\n\n- **Description**:\n\nCREMA-D is an audio-visual data set for emotion recognition. The data set\nconsists of facial and vocal emotional expressions in sentences spoken in a\nrange of basic emotional states (happy, sad, anger, fear, disgust, and neutral).\n7,442 clips of 91 actors with diverse ethnic backgrounds were collected. This\nrelease contains only the audio stream from the original audio-visual recording.\nThe samples are splitted between train, validation and testing so that samples\nfrom each speaker belongs to exactly one split.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/crema-d)\n\n- **Homepage** :\n \u003chttps://github.com/CheyneyComputerScience/CREMA-D\u003e\n\n- **Source code** :\n [`tfds.audio.CremaD`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/audio/crema_d.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `579.25 MiB`\n\n- **Dataset size** : `1.65 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 1,556 |\n| `'train'` | 5,144 |\n| `'validation'` | 738 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'audio': Audio(shape=(None,), dtype=int64),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=6),\n 'speaker_id': string,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------|--------------|---------|--------|-------------|\n| | FeaturesDict | | | |\n| audio | Audio | (None,) | int64 | |\n| label | ClassLabel | | int64 | |\n| speaker_id | Tensor | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('audio', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{cao2014crema,\n title={ {CREMA-D}: Crowd-sourced emotional multimodal actors dataset},\n author={Cao, Houwei and Cooper, David G and Keutmann, Michael K and Gur, Ruben C and Nenkova, Ani and Verma, Ragini},\n journal={IEEE transactions on affective computing},\n volume={5},\n number={4},\n pages={377--390},\n year={2014},\n publisher={IEEE}\n }"]]