dmlab
Stay organized with collections
Save and categorize content based on your preferences.
The Dmlab dataset contains frames observed by the agent acting in the DeepMind
Lab environment, which are annotated by the distance between the agent and
various objects present in the environment. The goal is to is to evaluate the
ability of a visual model to reason about distances from the visual input in 3D
environments. The Dmlab dataset consists of 360x480 color images in 6 classes.
The classes are {close, far, very far} x {positive reward, negative reward}
respectively.
Split |
Examples |
'test' |
22,735 |
'train' |
65,550 |
'validation' |
22,628 |
FeaturesDict({
'filename': Text(shape=(), dtype=string),
'image': Image(shape=(360, 480, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=6),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
filename |
Text |
|
string |
|
image |
Image |
(360, 480, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@article{zhai2019visual,
title={The Visual Task Adaptation Benchmark},
author={Xiaohua Zhai and Joan Puigcerver and Alexander Kolesnikov and
Pierre Ruyssen and Carlos Riquelme and Mario Lucic and
Josip Djolonga and Andre Susano Pinto and Maxim Neumann and
Alexey Dosovitskiy and Lucas Beyer and Olivier Bachem and
Michael Tschannen and Marcin Michalski and Olivier Bousquet and
Sylvain Gelly and Neil Houlsby},
year={2019},
eprint={1910.04867},
archivePrefix={arXiv},
primaryClass={cs.CV},
url = {https://arxiv.org/abs/1910.04867}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# dmlab\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe Dmlab dataset contains frames observed by the agent acting in the DeepMind\nLab environment, which are annotated by the distance between the agent and\nvarious objects present in the environment. The goal is to is to evaluate the\nability of a visual model to reason about distances from the visual input in 3D\nenvironments. The Dmlab dataset consists of 360x480 color images in 6 classes.\nThe classes are {close, far, very far} x {positive reward, negative reward}\nrespectively.\n\n- **Homepage** :\n \u003chttps://github.com/google-research/task_adaptation\u003e\n\n- **Source code** :\n [`tfds.image_classification.Dmlab`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image_classification/dmlab.py)\n\n- **Versions**:\n\n - **`2.0.1`** (default): No release notes.\n- **Download size** : `2.81 GiB`\n\n- **Dataset size** : `3.13 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 22,735 |\n| `'train'` | 65,550 |\n| `'validation'` | 22,628 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'filename': Text(shape=(), dtype=string),\n 'image': Image(shape=(360, 480, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=6),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------|--------------|---------------|--------|-------------|\n| | FeaturesDict | | | |\n| filename | Text | | string | |\n| image | Image | (360, 480, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{zhai2019visual,\n title={The Visual Task Adaptation Benchmark},\n author={Xiaohua Zhai and Joan Puigcerver and Alexander Kolesnikov and\n Pierre Ruyssen and Carlos Riquelme and Mario Lucic and\n Josip Djolonga and Andre Susano Pinto and Maxim Neumann and\n Alexey Dosovitskiy and Lucas Beyer and Olivier Bachem and\n Michael Tschannen and Marcin Michalski and Olivier Bousquet and\n Sylvain Gelly and Neil Houlsby},\n year={2019},\n eprint={1910.04867},\n archivePrefix={arXiv},\n primaryClass={cs.CV},\n url = {https://arxiv.org/abs/1910.04867}\n }"]]