dolphin_number_word
Stay organized with collections
Save and categorize content based on your preferences.
Dolphin Math Word Problem dataset (2015), as presented in
https://www.microsoft.com/en-us/research/uploads/prod/2016/02//dolphin-sigmadolphin.datasets.pdf
Split |
Examples |
'test' |
3,507 |
'train' |
864 |
FeaturesDict({
'ans': Text(shape=(), dtype=string),
'equations': Text(shape=(), dtype=string),
'id': Text(shape=(), dtype=string),
'index': int32,
'sources': Text(shape=(), dtype=string),
'text': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
ans |
Text |
|
string |
|
equations |
Text |
|
string |
|
id |
Text |
|
string |
|
index |
Tensor |
|
int32 |
|
sources |
Text |
|
string |
|
text |
Text |
|
string |
|
@inproceedings{inproceedings,
author = {Shi, Shuming and Wang, Yuehui and Lin, Chin-Yew and Liu, Xiaojiang and Rui, Yong},
year = {2015},
month = {09},
pages = {},
title = {Automatically Solving Number Word Problems by Semantic Parsing and Reasoning},
doi = {10.18653/v1/D15-1135}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-03-14 UTC.
[null,null,["Last updated 2025-03-14 UTC."],[],[],null,["# dolphin_number_word\n\n\u003cbr /\u003e\n\n- **Description**:\n\nDolphin Math Word Problem dataset (2015), as presented in\n\u003chttps://www.microsoft.com/en-us/research/uploads/prod/2016/02//dolphin-sigmadolphin.datasets.pdf\u003e\n\n- **Homepage** :\n \u003chttps://www.microsoft.com/en-us/research/project/sigmadolphin-2/\u003e\n\n- **Source code** :\n [`tfds.text.dolphin_number_word.DolphinNumberWord`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/dolphin_number_word/dolphin_number_word.py)\n\n- **Versions**:\n\n - `0.0.1`: Initial release.\n - `0.0.2`: RaggedTensor fix. Equations and Sources represented as a singlestring with components delimited by spaces\n - **`0.0.3`** (default): Reintroduced logic to handle edge-case involving examples without sources.\n- **Download size** : `280.42 KiB`\n\n- **Dataset size** : `1.49 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 3,507 |\n| `'train'` | 864 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'ans': Text(shape=(), dtype=string),\n 'equations': Text(shape=(), dtype=string),\n 'id': Text(shape=(), dtype=string),\n 'index': int32,\n 'sources': Text(shape=(), dtype=string),\n 'text': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| ans | Text | | string | |\n| equations | Text | | string | |\n| id | Text | | string | |\n| index | Tensor | | int32 | |\n| sources | Text | | string | |\n| text | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('text', 'ans')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{inproceedings,\n author = {Shi, Shuming and Wang, Yuehui and Lin, Chin-Yew and Liu, Xiaojiang and Rui, Yong},\n year = {2015},\n month = {09},\n pages = {},\n title = {Automatically Solving Number Word Problems by Semantic Parsing and Reasoning},\n doi = {10.18653/v1/D15-1135}\n }"]]