dtd
Stay organized with collections
Save and categorize content based on your preferences.
The Describable Textures Dataset (DTD) is an evolving collection of textural
images in the wild, annotated with a series of human-centric attributes,
inspired by the perceptual properties of textures. This data is made available
to the computer vision community for research purposes.
The "label" of each example is its "key attribute" (see the official website).
The official release of the dataset defines a 10-fold cross-validation
partition. Our TRAIN/TEST/VALIDATION splits are those of the first fold.
Split |
Examples |
'test' |
1,880 |
'train' |
1,880 |
'validation' |
1,880 |
FeaturesDict({
'file_name': Text(shape=(), dtype=string),
'image': Image(shape=(None, None, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=47),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
file_name |
Text |
|
string |
|
image |
Image |
(None, None, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@InProceedings{cimpoi14describing,
Author = {M. Cimpoi and S. Maji and I. Kokkinos and S. Mohamed and A. Vedaldi},
Title = {Describing Textures in the Wild},
Booktitle = {Proceedings of the {IEEE} Conf. on Computer Vision and Pattern Recognition ({CVPR})},
Year = {2014} }
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[null,null,["Last updated 2022-12-06 UTC."],[],[],null,["# dtd\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe Describable Textures Dataset (DTD) is an evolving collection of textural\nimages in the wild, annotated with a series of human-centric attributes,\ninspired by the perceptual properties of textures. This data is made available\nto the computer vision community for research purposes.\n\nThe \"label\" of each example is its \"key attribute\" (see the official website).\nThe official release of the dataset defines a 10-fold cross-validation\npartition. Our TRAIN/TEST/VALIDATION splits are those of the first fold.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/dtd)\n\n- **Homepage** :\n [https://www.robots.ox.ac.uk/\\~vgg/data/dtd/index.html](https://www.robots.ox.ac.uk/%7Evgg/data/dtd/index.html)\n\n- **Source code** :\n [`tfds.image_classification.Dtd`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image_classification/dtd.py)\n\n- **Versions**:\n\n - **`3.0.1`** (default): No release notes.\n- **Download size** : `596.28 MiB`\n\n- **Dataset size** : `603.00 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 1,880 |\n| `'train'` | 1,880 |\n| `'validation'` | 1,880 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'file_name': Text(shape=(), dtype=string),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=47),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------|--------------|-----------------|--------|-------------|\n| | FeaturesDict | | | |\n| file_name | Text | | string | |\n| image | Image | (None, None, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @InProceedings{cimpoi14describing,\n Author = {M. Cimpoi and S. Maji and I. Kokkinos and S. Mohamed and A. Vedaldi},\n Title = {Describing Textures in the Wild},\n Booktitle = {Proceedings of the {IEEE} Conf. on Computer Vision and Pattern Recognition ({CVPR})},\n Year = {2014} }"]]