الممحاة
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
Eraser Multi RC هي مجموعة بيانات للاستعلامات عبر مقاطع متعددة الأسطر ، جنبًا إلى جنب مع الإجابات والتعليل المنطقي. يحتوي كل مثال في مجموعة البيانات هذه على الأجزاء الخمسة التالية
- ممر متعدد الخطوط 2. استعلام عن المقطع 3. إجابة على الاستعلام
- تصنيف ما إذا كانت الإجابة صحيحة أم خاطئة 5. شرح يبرر التصنيف
انشق، مزق | أمثلة |
---|
'test' | 4848 |
'train' | 24،029 |
'validation' | 3214 |
FeaturesDict({
'evidences': Sequence(Text(shape=(), dtype=string)),
'label': ClassLabel(shape=(), dtype=int64, num_classes=2),
'passage': Text(shape=(), dtype=string),
'query_and_answer': Text(shape=(), dtype=string),
})
ميزة | فصل | شكل | نوع | وصف |
---|
| الميزات | | | |
الأدلة | تسلسل (نص) | (لا أحد،) | سلسلة | |
ضع الكلمة المناسبة | ClassLabel | | int64 | |
الممر | نص | | سلسلة | |
الاستعلام_و_الإجابة | نص | | سلسلة | |
@unpublished{eraser2019,
title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},
author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}
}
@inproceedings{MultiRC2018,
author = {Daniel Khashabi and Snigdha Chaturvedi and Michael Roth and Shyam Upadhyay and Dan Roth},
title = {Looking Beyond the Surface:A Challenge Set for Reading Comprehension over Multiple Sentences},
booktitle = {NAACL},
year = {2018}
}
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2022-12-06 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2022-12-06 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# eraser_multi_rc\n\n\u003cbr /\u003e\n\n- **Description**:\n\nEraser Multi RC is a dataset for queries over multi-line passages, along with\nanswers and a rationalte. Each example in this dataset has the following 5 parts\n\n1. A Mutli-line Passage 2. A Query about the passage 3. An Answer to the query\n2. A Classification as to whether the answer is right or wrong 5. An Explanation justifying the classification\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/multirc)\n\n- **Homepage** :\n \u003chttps://cogcomp.seas.upenn.edu/multirc/\u003e\n\n- **Source code** :\n [`tfds.text.EraserMultiRc`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/eraser_multi_rc.py)\n\n- **Versions**:\n\n - **`0.1.1`** (default): No release notes.\n- **Download size** : `1.59 MiB`\n\n- **Dataset size** : `62.59 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 4,848 |\n| `'train'` | 24,029 |\n| `'validation'` | 3,214 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'evidences': Sequence(Text(shape=(), dtype=string)),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'passage': Text(shape=(), dtype=string),\n 'query_and_answer': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------|----------------|---------|--------|-------------|\n| | FeaturesDict | | | |\n| evidences | Sequence(Text) | (None,) | string | |\n| label | ClassLabel | | int64 | |\n| passage | Text | | string | |\n| query_and_answer | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @unpublished{eraser2019,\n title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},\n author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}\n }\n @inproceedings{MultiRC2018,\n author = {Daniel Khashabi and Snigdha Chaturvedi and Michael Roth and Shyam Upadhyay and Dan Roth},\n title = {Looking Beyond the Surface:A Challenge Set for Reading Comprehension over Multiple Sentences},\n booktitle = {NAACL},\n year = {2018}\n }"]]