eth_agent_affordances
Stay organized with collections
Save and categorize content based on your preferences.
Franka opening ovens -- point cloud + proprio only
Split |
Examples |
'train' |
118 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
'input_point_cloud': Tensor(shape=(10000, 3), dtype=float16, description=Point cloud (geometry only) of the object at the beginning of the episode (world frame) as a numpy array (10000,3).),
}),
'steps': Dataset({
'action': Tensor(shape=(6,), dtype=float32, description=Robot action, consists of [end-effector velocity (v_x,v_y,v_z,omega_x,omega_y,omega_z) in world frame),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(64, 64, 3), dtype=uint8, description=Main camera RGB observation. Not available for this dataset, will be set to np.zeros.),
'input_point_cloud': Tensor(shape=(10000, 3), dtype=float16, description=Point cloud (geometry only) of the object at the beginning of the episode (world frame) as a numpy array (10000,3).),
'state': Tensor(shape=(8,), dtype=float32, description=State, consists of [end-effector pose (x,y,z,yaw,pitch,roll) in world frame, 1x gripper open/close, 1x door opening angle].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Text |
|
string |
Path to the original data file. |
episode_metadata/input_point_cloud |
Tensor |
(10000, 3) |
float16 |
Point cloud (geometry only) of the object at the beginning of the episode (world frame) as a numpy array (10000,3). |
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(6,) |
float32 |
Robot action, consists of [end-effector velocity (v_x,v_y,v_z,omega_x,omega_y,omega_z) in world frame |
steps/discount |
Scalar |
|
float32 |
Discount if provided, default to 1. |
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_embedding |
Tensor |
(512,) |
float32 |
Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction |
Text |
|
string |
Language Instruction. |
steps/observation |
FeaturesDict |
|
|
|
steps/observation/image |
Image |
(64, 64, 3) |
uint8 |
Main camera RGB observation. Not available for this dataset, will be set to np.zeros. |
steps/observation/input_point_cloud |
Tensor |
(10000, 3) |
float16 |
Point cloud (geometry only) of the object at the beginning of the episode (world frame) as a numpy array (10000,3). |
steps/observation/state |
Tensor |
(8,) |
float32 |
State, consists of [end-effector pose (x,y,z,yaw,pitch,roll) in world frame, 1x gripper open/close, 1x door opening angle]. |
steps/reward |
Scalar |
|
float32 |
Reward if provided, 1 on final step for demos. |
@inproceedings{schiavi2023learning,
title={Learning agent-aware affordances for closed-loop interaction with articulated objects},
author={Schiavi, Giulio and Wulkop, Paula and Rizzi, Giuseppe and Ott, Lionel and Siegwart, Roland and Chung, Jen Jen},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
pages={5916--5922},
year={2023},
organization={IEEE}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-03 UTC.
[null,null,["Last updated 2024-09-03 UTC."],[],[],null,["# eth_agent_affordances\n\n\u003cbr /\u003e\n\n- **Description**:\n\nFranka opening ovens -- point cloud + proprio only\n\n- **Homepage** :\n \u003chttps://ieeexplore.ieee.org/iel7/10160211/10160212/10160747.pdf\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.EthAgentAffordances`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `17.27 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 118 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n 'input_point_cloud': Tensor(shape=(10000, 3), dtype=float16, description=Point cloud (geometry only) of the object at the beginning of the episode (world frame) as a numpy array (10000,3).),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(6,), dtype=float32, description=Robot action, consists of [end-effector velocity (v_x,v_y,v_z,omega_x,omega_y,omega_z) in world frame),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'image': Image(shape=(64, 64, 3), dtype=uint8, description=Main camera RGB observation. Not available for this dataset, will be set to np.zeros.),\n 'input_point_cloud': Tensor(shape=(10000, 3), dtype=float16, description=Point cloud (geometry only) of the object at the beginning of the episode (world frame) as a numpy array (10000,3).),\n 'state': Tensor(shape=(8,), dtype=float32, description=State, consists of [end-effector pose (x,y,z,yaw,pitch,roll) in world frame, 1x gripper open/close, 1x door opening angle].),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-------------------------------------|--------------|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| episode_metadata/input_point_cloud | Tensor | (10000, 3) | float16 | Point cloud (geometry only) of the object at the beginning of the episode (world frame) as a numpy array (10000,3). |\n| steps | Dataset | | | |\n| steps/action | Tensor | (6,) | float32 | Robot action, consists of \\[end-effector velocity (v_x,v_y,v_z,omega_x,omega_y,omega_z) in world frame |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Language Instruction. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (64, 64, 3) | uint8 | Main camera RGB observation. Not available for this dataset, will be set to np.zeros. |\n| steps/observation/input_point_cloud | Tensor | (10000, 3) | float16 | Point cloud (geometry only) of the object at the beginning of the episode (world frame) as a numpy array (10000,3). |\n| steps/observation/state | Tensor | (8,) | float32 | State, consists of \\[end-effector pose (x,y,z,yaw,pitch,roll) in world frame, 1x gripper open/close, 1x door opening angle\\]. |\n| steps/reward | Scalar | | float32 | Reward if provided, 1 on final step for demos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{schiavi2023learning,\n title={Learning agent-aware affordances for closed-loop interaction with articulated objects},\n author={Schiavi, Giulio and Wulkop, Paula and Rizzi, Giuseppe and Ott, Lionel and Siegwart, Roland and Chung, Jen Jen},\n booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},\n pages={5916--5922},\n year={2023},\n organization={IEEE}\n }"]]