german_credit_numeric
Stay organized with collections
Save and categorize content based on your preferences.
This dataset classifies people described by a set of attributes as good or bad
credit risks. The version here is the "numeric" variant where categorical and
ordered categorical attributes have been encoded as indicator and integer
quantities respectively.
Split |
Examples |
'train' |
1,000 |
FeaturesDict({
'features': Tensor(shape=(24,), dtype=int32),
'label': ClassLabel(shape=(), dtype=int64, num_classes=2),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
features |
Tensor |
(24,) |
int32 |
|
label |
ClassLabel |
|
int64 |
|
@misc{Dua:2019 ,
author = "Dua, Dheeru and Graff, Casey",
year = "2017",
title = "{UCI} Machine Learning Repository",
url = "http://archive.ics.uci.edu/ml",
institution = "University of California, Irvine, School of Information and Computer Sciences"
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-11-23 UTC.
[null,null,["Last updated 2022-11-23 UTC."],[],[],null,["# german_credit_numeric\n\n- **Description**:\n\nThis dataset classifies people described by a set of attributes as good or bad\ncredit risks. The version here is the \"numeric\" variant where categorical and\nordered categorical attributes have been encoded as indicator and integer\nquantities respectively.\n\n- **Homepage** :\n \u003chttps://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)\u003e\n\n- **Source code** :\n [`tfds.structured.GermanCreditNumeric`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/structured/german_credit_numeric.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `99.61 KiB`\n\n- **Dataset size** : `58.61 KiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 1,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'features': Tensor(shape=(24,), dtype=int32),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=2),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------|--------------|-------|-------|-------------|\n| | FeaturesDict | | | |\n| features | Tensor | (24,) | int32 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('features', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @misc{Dua:2019 ,\n author = \"Dua, Dheeru and Graff, Casey\",\n year = \"2017\",\n title = \"{UCI} Machine Learning Repository\",\n url = \"http://archive.ics.uci.edu/ml\",\n institution = \"University of California, Irvine, School of Information and Computer Sciences\"\n }"]]