imagenet_a
Stay organized with collections
Save and categorize content based on your preferences.
ImageNet-A is a set of images labelled with ImageNet labels that were obtained
by collecting new data and keeping only those images that ResNet-50 models fail
to correctly classify. For more details please refer to the paper.
The label space is the same as that of ImageNet2012. Each example is represented
as a dictionary with the following keys:
Split |
Examples |
'test' |
7,500 |
FeaturesDict({
'file_name': Text(shape=(), dtype=string),
'image': Image(shape=(None, None, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=1000),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
file_name |
Text |
|
string |
|
image |
Image |
(None, None, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@article{hendrycks2019nae,
title={Natural Adversarial Examples},
author={Dan Hendrycks and Kevin Zhao and Steven Basart and Jacob Steinhardt and Dawn Song},
journal={arXiv preprint arXiv:1907.07174},
year={2019}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# imagenet_a\n\n\u003cbr /\u003e\n\n- **Description**:\n\nImageNet-A is a set of images labelled with ImageNet labels that were obtained\nby collecting new data and keeping only those images that ResNet-50 models fail\nto correctly classify. For more details please refer to the paper.\n\nThe label space is the same as that of ImageNet2012. Each example is represented\nas a dictionary with the following keys:\n\n- 'image': The image, a (H, W, 3)-tensor.\n- 'label': An integer in the range \\[0, 1000).\n- 'file_name': A unique sting identifying the example within the dataset.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/imagenet-a)\n\n- **Homepage** :\n \u003chttps://github.com/hendrycks/natural-adv-examples\u003e\n\n- **Source code** :\n [`tfds.datasets.imagenet_a.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/imagenet_a/imagenet_a_dataset_builder.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): No release notes.\n- **Download size** : `655.70 MiB`\n\n- **Dataset size** : `650.87 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------|----------|\n| `'test'` | 7,500 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'file_name': Text(shape=(), dtype=string),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=1000),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------|--------------|-----------------|--------|-------------|\n| | FeaturesDict | | | |\n| file_name | Text | | string | |\n| image | Image | (None, None, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{hendrycks2019nae,\n title={Natural Adversarial Examples},\n author={Dan Hendrycks and Kevin Zhao and Steven Basart and Jacob Steinhardt and Dawn Song},\n journal={arXiv preprint arXiv:1907.07174},\n year={2019}\n }"]]