imagenet_sketch
Stay organized with collections
Save and categorize content based on your preferences.
ImageNet-Sketch consists of 50,889 black and white sketch images, 50 for each of
the 1000 ImageNet classes. These images were originally collected from Google
Image Search for "sketch of __". 100 images were collected and then manually
filtered. For classes with fewer than 50 good images, additional images were
constructed by flip or rotation.
Split |
Examples |
'test' |
50,889 |
FeaturesDict({
'file_name': Text(shape=(), dtype=string),
'image': Image(shape=(None, None, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=1000),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
file_name |
Text |
|
string |
|
image |
Image |
(None, None, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@inproceedings{wang2019learning,
title={Learning Robust Global Representations by Penalizing Local Predictive Power},
author={Wang, Haohan and Ge, Songwei and Lipton, Zachary and Xing, Eric P},
booktitle={Advances in Neural Information Processing Systems},
pages={10506--10518},
year={2019}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-10 UTC.
[null,null,["Last updated 2022-12-10 UTC."],[],[],null,["# imagenet_sketch\n\n\u003cbr /\u003e\n\n- **Description**:\n\nImageNet-Sketch consists of 50,889 black and white sketch images, 50 for each of\nthe 1000 ImageNet classes. These images were originally collected from Google\nImage Search for \"sketch of __\". 100 images were collected and then manually\nfiltered. For classes with fewer than 50 good images, additional images were\nconstructed by flip or rotation.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/imagenet-sketch)\n\n- **Homepage** :\n \u003chttps://github.com/HaohanWang/ImageNet-Sketch\u003e\n\n- **Source code** :\n [`tfds.datasets.imagenet_sketch.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/imagenet_sketch/imagenet_sketch_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Download size** : `7.07 GiB`\n\n- **Dataset size** : `7.61 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------|----------|\n| `'test'` | 50,889 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'file_name': Text(shape=(), dtype=string),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=1000),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------|--------------|-----------------|--------|-------------|\n| | FeaturesDict | | | |\n| file_name | Text | | string | |\n| image | Image | (None, None, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{wang2019learning,\n title={Learning Robust Global Representations by Penalizing Local Predictive Power},\n author={Wang, Haohan and Ge, Songwei and Lipton, Zachary and Xing, Eric P},\n booktitle={Advances in Neural Information Processing Systems},\n pages={10506--10518},\n year={2019}\n }"]]