kmnist
Stay organized with collections
Save and categorize content based on your preferences.
Kuzushiji-MNIST is a drop-in replacement for the MNIST dataset (28x28 grayscale,
70,000 images), provided in the original MNIST format as well as a NumPy format.
Since MNIST restricts us to 10 classes, we chose one character to represent each
of the 10 rows of Hiragana when creating Kuzushiji-MNIST.
Split |
Examples |
'test' |
10,000 |
'train' |
60,000 |
FeaturesDict({
'image': Image(shape=(28, 28, 1), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=10),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(28, 28, 1) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@online{clanuwat2018deep,
author = {Tarin Clanuwat and Mikel Bober-Irizar and Asanobu Kitamoto and Alex Lamb and Kazuaki Yamamoto and David Ha},
title = {Deep Learning for Classical Japanese Literature},
date = {2018-12-03},
year = {2018},
eprintclass = {cs.CV},
eprinttype = {arXiv},
eprint = {cs.CV/1812.01718},
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# kmnist\n\n\u003cbr /\u003e\n\n- **Description**:\n\nKuzushiji-MNIST is a drop-in replacement for the MNIST dataset (28x28 grayscale,\n70,000 images), provided in the original MNIST format as well as a NumPy format.\nSince MNIST restricts us to 10 classes, we chose one character to represent each\nof the 10 rows of Hiragana when creating Kuzushiji-MNIST.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/kuzushiji-mnist)\n\n- **Homepage** :\n \u003chttp://codh.rois.ac.jp/kmnist/index.html.en\u003e\n\n- **Source code** :\n [`tfds.image_classification.KMNIST`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image_classification/mnist.py)\n\n- **Versions**:\n\n - **`3.0.1`** (default): No release notes.\n- **Download size** : `20.26 MiB`\n\n- **Dataset size** : `31.76 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 10,000 |\n| `'train'` | 60,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(28, 28, 1), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=10),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------|--------------|-------------|-------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (28, 28, 1) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @online{clanuwat2018deep,\n author = {Tarin Clanuwat and Mikel Bober-Irizar and Asanobu Kitamoto and Alex Lamb and Kazuaki Yamamoto and David Ha},\n title = {Deep Learning for Classical Japanese Literature},\n date = {2018-12-03},\n year = {2018},\n eprintclass = {cs.CV},\n eprinttype = {arXiv},\n eprint = {cs.CV/1812.01718},\n }"]]