omniglot
Stay organized with collections
Save and categorize content based on your preferences.
Omniglot data set for one-shot learning. This dataset contains 1623 different
handwritten characters from 50 different alphabets.
Split |
Examples |
'small1' |
2,720 |
'small2' |
3,120 |
'test' |
13,180 |
'train' |
19,280 |
FeaturesDict({
'alphabet': ClassLabel(shape=(), dtype=int64, num_classes=50),
'alphabet_char_id': int64,
'image': Image(shape=(105, 105, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=1623),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
alphabet |
ClassLabel |
|
int64 |
|
alphabet_char_id |
Tensor |
|
int64 |
|
image |
Image |
(105, 105, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@article{lake2015human,
title={Human-level concept learning through probabilistic program induction},
author={Lake, Brenden M and Salakhutdinov, Ruslan and Tenenbaum, Joshua B},
journal={Science},
volume={350},
number={6266},
pages={1332--1338},
year={2015},
publisher={American Association for the Advancement of Science}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-07-21 UTC.
[null,null,["Last updated 2025-07-21 UTC."],[],[],null,["# omniglot\n\n\u003cbr /\u003e\n\n- **Description**:\n\nOmniglot data set for one-shot learning. This dataset contains 1623 different\nhandwritten characters from 50 different alphabets.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/onmiglot)\n\n- **Homepage** :\n \u003chttps://github.com/brendenlake/omniglot/\u003e\n\n- **Source code** :\n [`tfds.image_classification.Omniglot`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image_classification/omniglot.py)\n\n- **Versions**:\n\n - **`3.0.0`** (default): New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n- **Download size** : `17.95 MiB`\n\n- **Dataset size** : `12.29 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|------------|----------|\n| `'small1'` | 2,720 |\n| `'small2'` | 3,120 |\n| `'test'` | 13,180 |\n| `'train'` | 19,280 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'alphabet': ClassLabel(shape=(), dtype=int64, num_classes=50),\n 'alphabet_char_id': int64,\n 'image': Image(shape=(105, 105, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=1623),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------|--------------|---------------|-------|-------------|\n| | FeaturesDict | | | |\n| alphabet | ClassLabel | | int64 | |\n| alphabet_char_id | Tensor | | int64 | |\n| image | Image | (105, 105, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{lake2015human,\n title={Human-level concept learning through probabilistic program induction},\n author={Lake, Brenden M and Salakhutdinov, Ruslan and Tenenbaum, Joshua B},\n journal={Science},\n volume={350},\n number={6266},\n pages={1332--1338},\n year={2015},\n publisher={American Association for the Advancement of Science}\n }"]]