open_images_challenge2019_detection
Stay organized with collections
Save and categorize content based on your preferences.
Open Images is a collaborative release of ~9 million images annotated with
image-level labels, object bounding boxes, object segmentation masks, and visual
relationships. This uniquely large and diverse dataset is designed to spur state
of the art advances in analyzing and understanding images.
This contains the data from thee Object Detection track of the competition. The
goal in this track is to predict a tight bounding box around all object
instances of 500 classes.
The images are annotated with positive image-level labels, indicating certain
object classes are present, and with negative image-level labels, indicating
certain classes are absent. In the competition, all other unannotated classes
are excluded from evaluation in that image. For each positive image-level label
in an image, every instance of that object class in the image was annotated.
Split |
Examples |
'test' |
99,999 |
'train' |
1,743,042 |
'validation' |
41,620 |
FeaturesDict({
'bobjects': Sequence({
'bbox': BBoxFeature(shape=(4,), dtype=float32),
'is_group_of': bool,
'label': ClassLabel(shape=(), dtype=int64, num_classes=500),
}),
'id': Text(shape=(), dtype=string),
'image': Image(shape=(None, None, 3), dtype=uint8),
'objects': Sequence({
'confidence': float32,
'label': ClassLabel(shape=(), dtype=int64, num_classes=500),
'source': Text(shape=(), dtype=string),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
bobjects |
Sequence |
|
|
|
bobjects/bbox |
BBoxFeature |
(4,) |
float32 |
|
bobjects/is_group_of |
Tensor |
|
bool |
|
bobjects/label |
ClassLabel |
|
int64 |
|
id |
Text |
|
string |
|
image |
Image |
(None, None, 3) |
uint8 |
|
objects |
Sequence |
|
|
|
objects/confidence |
Tensor |
|
float32 |
|
objects/label |
ClassLabel |
|
int64 |
|
objects/source |
Text |
|
string |
|
open_images_challenge2019_detection/200k (default config)
Config description: Images have at most 200,000 pixels, at 72 JPEG
quality.
Dataset size: 59.06 GiB
Figure
(tfds.show_examples):

open_images_challenge2019_detection/300k
Config description: Images have at most 300,000 pixels, at 72 JPEG
quality.
Dataset size: 80.10 GiB
Figure
(tfds.show_examples):

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# open_images_challenge2019_detection\n\n\u003cbr /\u003e\n\n- **Description**:\n\nOpen Images is a collaborative release of \\~9 million images annotated with\nimage-level labels, object bounding boxes, object segmentation masks, and visual\nrelationships. This uniquely large and diverse dataset is designed to spur state\nof the art advances in analyzing and understanding images.\n\nThis contains the data from thee Object Detection track of the competition. The\ngoal in this track is to predict a tight bounding box around all object\ninstances of 500 classes.\n\nThe images are annotated with positive image-level labels, indicating certain\nobject classes are present, and with negative image-level labels, indicating\ncertain classes are absent. In the competition, all other unannotated classes\nare excluded from evaluation in that image. For each positive image-level label\nin an image, every instance of that object class in the image was annotated.\n\n- **Homepage** :\n \u003chttps://storage.googleapis.com/openimages/web/challenge2019.html\u003e\n\n- **Source code** :\n [`tfds.datasets.open_images_challenge2019_detection.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/open_images_challenge2019_detection/open_images_challenge2019_detection_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `534.63 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|-----------|\n| `'test'` | 99,999 |\n| `'train'` | 1,743,042 |\n| `'validation'` | 41,620 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'bobjects': Sequence({\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'is_group_of': bool,\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=500),\n }),\n 'id': Text(shape=(), dtype=string),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'objects': Sequence({\n 'confidence': float32,\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=500),\n 'source': Text(shape=(), dtype=string),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------------|--------------|-----------------|---------|-------------|\n| | FeaturesDict | | | |\n| bobjects | Sequence | | | |\n| bobjects/bbox | BBoxFeature | (4,) | float32 | |\n| bobjects/is_group_of | Tensor | | bool | |\n| bobjects/label | ClassLabel | | int64 | |\n| id | Text | | string | |\n| image | Image | (None, None, 3) | uint8 | |\n| objects | Sequence | | | |\n| objects/confidence | Tensor | | float32 | |\n| objects/label | ClassLabel | | int64 | |\n| objects/source | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Citation**:\n\nopen_images_challenge2019_detection/200k (default config)\n---------------------------------------------------------\n\n- **Config description**: Images have at most 200,000 pixels, at 72 JPEG\n quality.\n\n- **Dataset size** : `59.06 GiB`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nopen_images_challenge2019_detection/300k\n----------------------------------------\n\n- **Config description**: Images have at most 300,000 pixels, at 72 JPEG\n quality.\n\n- **Dataset size** : `80.10 GiB`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]