quickdraw_bitmap
Stay organized with collections
Save and categorize content based on your preferences.
The Quick Draw Dataset is a collection of 50 million drawings across 345
categories, contributed by players of the game Quick, Draw!. The bitmap dataset
contains these drawings converted from vector format into 28x28 grayscale images
Split |
Examples |
'train' |
50,426,266 |
FeaturesDict({
'image': Image(shape=(28, 28, 1), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=345),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(28, 28, 1) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@article{DBLP:journals/corr/HaE17,
author = {David Ha and
Douglas Eck},
title = {A Neural Representation of Sketch Drawings},
journal = {CoRR},
volume = {abs/1704.03477},
year = {2017},
url = {http://arxiv.org/abs/1704.03477},
archivePrefix = {arXiv},
eprint = {1704.03477},
timestamp = {Mon, 13 Aug 2018 16:48:30 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/HaE17},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# quickdraw_bitmap\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe Quick Draw Dataset is a collection of 50 million drawings across 345\ncategories, contributed by players of the game Quick, Draw!. The bitmap dataset\ncontains these drawings converted from vector format into 28x28 grayscale images\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/quick-draw-dataset)\n\n- **Homepage** :\n \u003chttps://github.com/googlecreativelab/quickdraw-dataset\u003e\n\n- **Source code** :\n [`tfds.datasets.quickdraw_bitmap.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/quickdraw_bitmap/quickdraw_bitmap_dataset_builder.py)\n\n- **Versions**:\n\n - **`3.0.0`** (default): New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n- **Download size** : `36.82 GiB`\n\n- **Dataset size** : `Unknown size`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Unknown\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|------------|\n| `'train'` | 50,426,266 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(28, 28, 1), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=345),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------|--------------|-------------|-------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (28, 28, 1) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{DBLP:journals/corr/HaE17,\n author = {David Ha and\n Douglas Eck},\n title = {A Neural Representation of Sketch Drawings},\n journal = {CoRR},\n volume = {abs/1704.03477},\n year = {2017},\n url = {http://arxiv.org/abs/1704.03477},\n archivePrefix = {arXiv},\n eprint = {1704.03477},\n timestamp = {Mon, 13 Aug 2018 16:48:30 +0200},\n biburl = {https://dblp.org/rec/bib/journals/corr/HaE17},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n }"]]