siscore
Stay organized with collections
Save and categorize content based on your preferences.
SI-Score (Synthetic Interventions on Scenes for Robustness Evaluation) is a
dataset to evaluate robustness of image classification models to changes in
object size, location and rotation angle.
In SI-SCORE, we take objects and backgrounds and systematically vary object
size, location and rotation angle so we can study the effect of changing these
factors on model performance. The image label space is the ImageNet label space
(1k classes) for easy evaluation of models.
More information about the dataset can be found at
https://github.com/google-research/si-score
FeaturesDict({
'dataset_label': ClassLabel(shape=(), dtype=int64, num_classes=1000),
'image': Image(shape=(None, None, 3), dtype=uint8),
'image_id': int64,
'label': ClassLabel(shape=(), dtype=int64, num_classes=1000),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
dataset_label |
ClassLabel |
|
int64 |
|
image |
Image |
(None, None, 3) |
uint8 |
|
image_id |
Tensor |
|
int64 |
|
label |
ClassLabel |
|
int64 |
|
@misc{djolonga2020robustness,
title={On Robustness and Transferability of Convolutional Neural Networks},
author={Josip Djolonga and Jessica Yung and Michael Tschannen and Rob Romijnders and Lucas Beyer and Alexander Kolesnikov and Joan Puigcerver and Matthias Minderer and Alexander D'Amour and Dan Moldovan and Sylvain Gelly and Neil Houlsby and Xiaohua Zhai and Mario Lucic},
year={2020},
eprint={2007.08558},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
siscore/rotation (default config)
Split |
Examples |
'test' |
39,540 |

siscore/size
Split |
Examples |
'test' |
92,884 |

siscore/location
Split |
Examples |
'test' |
541,548 |

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# siscore\n\n\u003cbr /\u003e\n\n- **Description**:\n\nSI-Score (Synthetic Interventions on Scenes for Robustness Evaluation) is a\ndataset to evaluate robustness of image classification models to changes in\nobject size, location and rotation angle.\n\nIn SI-SCORE, we take objects and backgrounds and systematically vary object\nsize, location and rotation angle so we can study the effect of changing these\nfactors on model performance. The image label space is the ImageNet label space\n(1k classes) for easy evaluation of models.\n\nMore information about the dataset can be found at\n\u003chttps://github.com/google-research/si-score\u003e\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/si-score)\n\n- **Homepage** :\n \u003chttps://github.com/google-research/si-score\u003e\n\n- **Source code** :\n [`tfds.datasets.siscore.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/siscore/siscore_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Feature structure**:\n\n FeaturesDict({\n 'dataset_label': ClassLabel(shape=(), dtype=int64, num_classes=1000),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'image_id': int64,\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=1000),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------------|--------------|-----------------|-------|-------------|\n| | FeaturesDict | | | |\n| dataset_label | ClassLabel | | int64 | |\n| image | Image | (None, None, 3) | uint8 | |\n| image_id | Tensor | | int64 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Citation**:\n\n @misc{djolonga2020robustness,\n title={On Robustness and Transferability of Convolutional Neural Networks},\n author={Josip Djolonga and Jessica Yung and Michael Tschannen and Rob Romijnders and Lucas Beyer and Alexander Kolesnikov and Joan Puigcerver and Matthias Minderer and Alexander D'Amour and Dan Moldovan and Sylvain Gelly and Neil Houlsby and Xiaohua Zhai and Mario Lucic},\n year={2020},\n eprint={2007.08558},\n archivePrefix={arXiv},\n primaryClass={cs.CV}\n }\n\nsiscore/rotation (default config)\n---------------------------------\n\n- **Config description**: factor of variation: rotation\n\n- **Download size** : `1.40 GiB`\n\n- **Dataset size** : `1.40 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------|----------|\n| `'test'` | 39,540 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsiscore/size\n------------\n\n- **Config description**: factor of variation: size\n\n- **Download size** : `3.25 GiB`\n\n- **Dataset size** : `3.27 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------|----------|\n| `'test'` | 92,884 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsiscore/location\n----------------\n\n- **Config description**: factor of variation: location\n\n- **Download size** : `18.21 GiB`\n\n- **Dataset size** : `18.31 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------|----------|\n| `'test'` | 541,548 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]