so2sat
Stay organized with collections
Save and categorize content based on your preferences.
So2Sat LCZ42 is a dataset consisting of co-registered synthetic aperture radar
and multispectral optical image patches acquired by the Sentinel-1 and
Sentinel-2 remote sensing satellites, and the corresponding local climate zones
(LCZ) label. The dataset is distributed over 42 cities across different
continents and cultural regions of the world.
The full dataset (all
) consists of 8 Sentinel-1 and 10 Sentinel-2 channels.
Alternatively, one can select the rgb
subset, which contains only the optical
frequency bands of Sentinel-2, rescaled and encoded as JPEG.
Dataset URL: http://doi.org/10.14459/2018MP1454690
License: http://creativecommons.org/licenses/by/4.0
@misc{mediatum1483140,
author = {Zhu, Xiaoxiang and Hu, Jingliang and Qiu, Chunping and Shi, Yilei and Bagheri, Hossein and Kang, Jian and Li, Hao and Mou, Lichao and Zhang, Guicheng and Häberle, Matthias and Han, Shiyao and Hua, Yuansheng and Huang, Rong and Hughes, Lloyd and Sun, Yao and Schmitt, Michael and Wang, Yuanyuan },
title = {NEW: So2Sat LCZ42},
publisher = {Technical University of Munich},
url = {https://mediatum.ub.tum.de/1483140},
type = {Dataset},
year = {2019},
doi = {10.14459/2018mp1483140},
keywords = {local climate zones ; big data ; classification ; remote sensing ; deep learning ; data fusion ; synthetic aperture radar imagery ; optical imagery},
abstract = {So2Sat LCZ42 is a dataset consisting of corresponding synthetic aperture radar and multispectral optical image data acquired by the Sentinel-1 and Sentinel-2 remote sensing satellites, and a corresponding local climate zones (LCZ) label. The dataset is distributed over 42 cities across different continents and cultural regions of the world, and comes with a split into fully independent, non-overlapping training, validation, and test sets.},
language = {en},
}
so2sat/rgb (default config)
FeaturesDict({
'image': Image(shape=(32, 32, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=17),
'sample_id': int64,
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(32, 32, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|
sample_id |
Tensor |
|
int64 |
|
so2sat/all
FeaturesDict({
'label': ClassLabel(shape=(), dtype=int64, num_classes=17),
'sample_id': int64,
'sentinel1': Tensor(shape=(32, 32, 8), dtype=float32),
'sentinel2': Tensor(shape=(32, 32, 10), dtype=float32),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
label |
ClassLabel |
|
int64 |
|
sample_id |
Tensor |
|
int64 |
|
sentinel1 |
Tensor |
(32, 32, 8) |
float32 |
|
sentinel2 |
Tensor |
(32, 32, 10) |
float32 |
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-01-13 UTC.
[null,null,["Last updated 2023-01-13 UTC."],[],[],null,["# so2sat\n\n\u003cbr /\u003e\n\n- **Description**:\n\nSo2Sat LCZ42 is a dataset consisting of co-registered synthetic aperture radar\nand multispectral optical image patches acquired by the Sentinel-1 and\nSentinel-2 remote sensing satellites, and the corresponding local climate zones\n(LCZ) label. The dataset is distributed over 42 cities across different\ncontinents and cultural regions of the world.\n\nThe full dataset (`all`) consists of 8 Sentinel-1 and 10 Sentinel-2 channels.\nAlternatively, one can select the `rgb` subset, which contains only the optical\nfrequency bands of Sentinel-2, rescaled and encoded as JPEG.\n\nDataset URL: \u003chttp://doi.org/10.14459/2018MP1454690\u003e \n\nLicense: \u003chttp://creativecommons.org/licenses/by/4.0\u003e\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/so2sat-lcz42)\n\n- **Homepage** :\n \u003chttp://doi.org/10.14459/2018MP1454690\u003e\n\n- **Source code** :\n [`tfds.datasets.so2sat.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/so2sat/so2sat_dataset_builder.py)\n\n- **Versions**:\n\n - `2.0.0`: New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n - **`2.1.0`** (default): Using updated optical channels calibration factor.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `Unknown size`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Unknown\n\n- **Splits**:\n\n| Split | Examples |\n|-------|----------|\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n Missing.\n\n- **Citation**:\n\n @misc{mediatum1483140,\n author = {Zhu, Xiaoxiang and Hu, Jingliang and Qiu, Chunping and Shi, Yilei and Bagheri, Hossein and Kang, Jian and Li, Hao and Mou, Lichao and Zhang, Guicheng and Häberle, Matthias and Han, Shiyao and Hua, Yuansheng and Huang, Rong and Hughes, Lloyd and Sun, Yao and Schmitt, Michael and Wang, Yuanyuan },\n title = {NEW: So2Sat LCZ42},\n publisher = {Technical University of Munich},\n url = {https://mediatum.ub.tum.de/1483140},\n type = {Dataset},\n year = {2019},\n doi = {10.14459/2018mp1483140},\n keywords = {local climate zones ; big data ; classification ; remote sensing ; deep learning ; data fusion ; synthetic aperture radar imagery ; optical imagery},\n abstract = {So2Sat LCZ42 is a dataset consisting of corresponding synthetic aperture radar and multispectral optical image data acquired by the Sentinel-1 and Sentinel-2 remote sensing satellites, and a corresponding local climate zones (LCZ) label. The dataset is distributed over 42 cities across different continents and cultural regions of the world, and comes with a split into fully independent, non-overlapping training, validation, and test sets.},\n language = {en},\n\n }\n\nso2sat/rgb (default config)\n---------------------------\n\n- **Config description**: Sentinel-2 RGB channels\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(32, 32, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=17),\n 'sample_id': int64,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------|--------------|-------------|-------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (32, 32, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n| sample_id | Tensor | | int64 | |\n\n- **Supervised keys** (See [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)): `('image', 'label')`\n\nso2sat/all\n----------\n\n- **Config description**: 8 Sentinel-1 and 10 Sentinel-2 channels\n\n- **Feature structure**:\n\n FeaturesDict({\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=17),\n 'sample_id': int64,\n 'sentinel1': Tensor(shape=(32, 32, 8), dtype=float32),\n 'sentinel2': Tensor(shape=(32, 32, 10), dtype=float32),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------|--------------|--------------|---------|-------------|\n| | FeaturesDict | | | |\n| label | ClassLabel | | int64 | |\n| sample_id | Tensor | | int64 | |\n| sentinel1 | Tensor | (32, 32, 8) | float32 | |\n| sentinel2 | Tensor | (32, 32, 10) | float32 | |\n\n- **Supervised keys** (See [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)): `None`"]]