sun397
Stay organized with collections
Save and categorize content based on your preferences.
The database contains 108,753 images of 397 categories, used in the Scene
UNderstanding (SUN) benchmark. The number of images varies across categories,
but there are at least 100 images per category.
Several configs of the dataset are made available through TFDS:
A custom (random) partition of the whole dataset with 76,128 training
images, 10,875 validation images and 21,750 test images. Images have been
resized to have at most 120,000 pixels, and encoded as JPEG with quality
of 72.
"standard-part1-120k", "standard-part2-120k", ..., "standard-part10-120k":
Each of the 10 official train/test partitions with 50 images per class in
each split. Images have been resized to have at most 120,000 pixels, and
encoded as JPEG with quality of 72.
Additional Documentation:
Explore on Papers With Code
north_east
Homepage:
https://vision.princeton.edu/projects/2010/SUN/
Source code:
tfds.datasets.sun397.Builder
Versions:
4.0.0
(default): No release notes.
Download size: 36.41 GiB
Dataset size: Unknown size
Auto-cached
(documentation):
Unknown
Feature structure:
FeaturesDict({
'file_name': Text(shape=(), dtype=string),
'image': Image(shape=(None, None, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=397),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
file_name |
Text |
|
string |
|
image |
Image |
(None, None, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|
@INPROCEEDINGS{Xiao:2010,
author={J. {Xiao} and J. {Hays} and K. A. {Ehinger} and A. {Oliva} and A. {Torralba} },
booktitle={2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
title={SUN database: Large-scale scene recognition from abbey to zoo},
year={2010},
volume={},
number={},
pages={3485-3492},
keywords={computer vision;human factors;image classification;object recognition;visual databases;SUN database;large-scale scene recognition;abbey;zoo;scene categorization;computer vision;scene understanding research;scene category;object categorization;scene understanding database;state-of-the-art algorithms;human scene classification performance;finer-grained scene representation;Sun;Large-scale systems;Layout;Humans;Image databases;Computer vision;Anthropometry;Bridges;Legged locomotion;Spatial databases},
doi={10.1109/CVPR.2010.5539970},
ISSN={1063-6919},
month={June},}
sun397/tfds (default config)
Config description: TFDS partition with random train/validation/test
splits with 70%/10%/20% of the images, respectively. Images are resized to
have at most 120,000 pixels, and are compressed with 72 JPEG quality.
Splits:
Split |
Examples |
'test' |
21,750 |
'train' |
76,128 |
'validation' |
10,875 |

sun397/standard-part1-120k
Split |
Examples |
'test' |
19,850 |
'train' |
19,850 |

sun397/standard-part2-120k
Split |
Examples |
'test' |
19,850 |
'train' |
19,850 |

sun397/standard-part3-120k
Split |
Examples |
'test' |
19,850 |
'train' |
19,850 |

sun397/standard-part4-120k
Split |
Examples |
'test' |
19,850 |
'train' |
19,850 |

sun397/standard-part5-120k
Split |
Examples |
'test' |
19,850 |
'train' |
19,850 |

sun397/standard-part6-120k
Split |
Examples |
'test' |
19,850 |
'train' |
19,850 |

sun397/standard-part7-120k
Split |
Examples |
'test' |
19,850 |
'train' |
19,850 |

sun397/standard-part8-120k
Split |
Examples |
'test' |
19,850 |
'train' |
19,850 |

sun397/standard-part9-120k
Split |
Examples |
'test' |
19,850 |
'train' |
19,850 |

sun397/standard-part10-120k
Split |
Examples |
'test' |
19,850 |
'train' |
19,850 |

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# sun397\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe database contains 108,753 images of 397 categories, used in the Scene\nUNderstanding (SUN) benchmark. The number of images varies across categories,\nbut there are at least 100 images per category.\n\nSeveral configs of the dataset are made available through TFDS:\n\n- A custom (random) partition of the whole dataset with 76,128 training\n images, 10,875 validation images and 21,750 test images. Images have been\n resized to have at most 120,000 pixels, and encoded as JPEG with quality\n of 72.\n\n- \"standard-part1-120k\", \"standard-part2-120k\", ..., \"standard-part10-120k\":\n Each of the 10 official train/test partitions with 50 images per class in\n each split. Images have been resized to have at most 120,000 pixels, and\n encoded as JPEG with quality of 72.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/sun397)\n\n- **Homepage** :\n \u003chttps://vision.princeton.edu/projects/2010/SUN/\u003e\n\n- **Source code** :\n [`tfds.datasets.sun397.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/sun397/sun397_dataset_builder.py)\n\n- **Versions**:\n\n - **`4.0.0`** (default): No release notes.\n- **Download size** : `36.41 GiB`\n\n- **Dataset size** : `Unknown size`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Unknown\n\n- **Feature structure**:\n\n FeaturesDict({\n 'file_name': Text(shape=(), dtype=string),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=397),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------|--------------|-----------------|--------|-------------|\n| | FeaturesDict | | | |\n| file_name | Text | | string | |\n| image | Image | (None, None, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Citation**:\n\n @INPROCEEDINGS{Xiao:2010,\n author={J. {Xiao} and J. {Hays} and K. A. {Ehinger} and A. {Oliva} and A. {Torralba} },\n booktitle={2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition},\n title={SUN database: Large-scale scene recognition from abbey to zoo},\n year={2010},\n volume={},\n number={},\n pages={3485-3492},\n keywords={computer vision;human factors;image classification;object recognition;visual databases;SUN database;large-scale scene recognition;abbey;zoo;scene categorization;computer vision;scene understanding research;scene category;object categorization;scene understanding database;state-of-the-art algorithms;human scene classification performance;finer-grained scene representation;Sun;Large-scale systems;Layout;Humans;Image databases;Computer vision;Anthropometry;Bridges;Legged locomotion;Spatial databases},\n doi={10.1109/CVPR.2010.5539970},\n ISSN={1063-6919},\n month={June},}\n\nsun397/tfds (default config)\n----------------------------\n\n- **Config description**: TFDS partition with random train/validation/test\n splits with 70%/10%/20% of the images, respectively. Images are resized to\n have at most 120,000 pixels, and are compressed with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 21,750 |\n| `'train'` | 76,128 |\n| `'validation'` | 10,875 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsun397/standard-part1-120k\n--------------------------\n\n- **Config description**: Train and test splits from the official partition\n number 1. Images are resized to have at most 120,000 pixels, and compressed\n with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 19,850 |\n| `'train'` | 19,850 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsun397/standard-part2-120k\n--------------------------\n\n- **Config description**: Train and test splits from the official partition\n number 2. Images are resized to have at most 120,000 pixels, and compressed\n with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 19,850 |\n| `'train'` | 19,850 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsun397/standard-part3-120k\n--------------------------\n\n- **Config description**: Train and test splits from the official partition\n number 3. Images are resized to have at most 120,000 pixels, and compressed\n with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 19,850 |\n| `'train'` | 19,850 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsun397/standard-part4-120k\n--------------------------\n\n- **Config description**: Train and test splits from the official partition\n number 4. Images are resized to have at most 120,000 pixels, and compressed\n with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 19,850 |\n| `'train'` | 19,850 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsun397/standard-part5-120k\n--------------------------\n\n- **Config description**: Train and test splits from the official partition\n number 5. Images are resized to have at most 120,000 pixels, and compressed\n with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 19,850 |\n| `'train'` | 19,850 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsun397/standard-part6-120k\n--------------------------\n\n- **Config description**: Train and test splits from the official partition\n number 6. Images are resized to have at most 120,000 pixels, and compressed\n with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 19,850 |\n| `'train'` | 19,850 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsun397/standard-part7-120k\n--------------------------\n\n- **Config description**: Train and test splits from the official partition\n number 7. Images are resized to have at most 120,000 pixels, and compressed\n with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 19,850 |\n| `'train'` | 19,850 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsun397/standard-part8-120k\n--------------------------\n\n- **Config description**: Train and test splits from the official partition\n number 8. Images are resized to have at most 120,000 pixels, and compressed\n with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 19,850 |\n| `'train'` | 19,850 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsun397/standard-part9-120k\n--------------------------\n\n- **Config description**: Train and test splits from the official partition\n number 9. Images are resized to have at most 120,000 pixels, and compressed\n with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 19,850 |\n| `'train'` | 19,850 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsun397/standard-part10-120k\n---------------------------\n\n- **Config description**: Train and test splits from the official partition\n number 10. Images are resized to have at most 120,000 pixels, and compressed\n with 72 JPEG quality.\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 19,850 |\n| `'train'` | 19,850 |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]