uc_merced
Stay organized with collections
Save and categorize content based on your preferences.
UC Merced is a 21 class land use remote sensing image dataset, with 100 images
per class. The images were manually extracted from large images from the USGS
National Map Urban Area Imagery collection for various urban areas around the
country. The pixel resolution of this public domain imagery is 0.3 m.
While most images are 256x256 pixels, there are 44 images with different shape.
Split |
Examples |
'train' |
2,100 |
FeaturesDict({
'filename': Text(shape=(), dtype=string),
'image': Image(shape=(None, None, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=21),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
filename |
Text |
|
string |
|
image |
Image |
(None, None, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@InProceedings{Nilsback08,
author = "Yang, Yi and Newsam, Shawn",
title = "Bag-Of-Visual-Words and Spatial Extensions for Land-Use Classification",
booktitle = "ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS)",
year = "2010",
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[null,null,["Last updated 2022-12-06 UTC."],[],[],null,["# uc_merced\n\n\u003cbr /\u003e\n\n- **Description**:\n\nUC Merced is a 21 class land use remote sensing image dataset, with 100 images\nper class. The images were manually extracted from large images from the USGS\nNational Map Urban Area Imagery collection for various urban areas around the\ncountry. The pixel resolution of this public domain imagery is 0.3 m.\n\nWhile most images are 256x256 pixels, there are 44 images with different shape.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/uc-merced-land-use-dataset)\n\n- **Homepage** :\n \u003chttp://weegee.vision.ucmerced.edu/datasets/landuse.html\u003e\n\n- **Source code** :\n [`tfds.image_classification.UcMerced`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image_classification/uc_merced.py)\n\n- **Versions**:\n\n - **`2.0.0`** (default): New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n- **Download size** : `317.07 MiB`\n\n- **Dataset size** : `238.63 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Only when `shuffle_files=False` (train)\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 2,100 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'filename': Text(shape=(), dtype=string),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=21),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------|--------------|-----------------|--------|-------------|\n| | FeaturesDict | | | |\n| filename | Text | | string | |\n| image | Image | (None, None, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @InProceedings{Nilsback08,\n author = \"Yang, Yi and Newsam, Shawn\",\n title = \"Bag-Of-Visual-Words and Spatial Extensions for Land-Use Classification\",\n booktitle = \"ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS)\",\n year = \"2010\",\n }"]]