waymo_open_dataset
Stay organized with collections
Save and categorize content based on your preferences.
The Waymo Open Dataset is comprised of high resolution sensor data collected by
Waymo self-driving cars in a wide variety of conditions. This data is licensed
for non-commercial use.
Warning: this dataset requires additional authorization and registration. Please
look at tfds documentation for accessing GCS, and afterwards, please register
via https://waymo.com/open/licensing/
FeaturesDict ({
'camera_FRONT' : FeaturesDict ({
'image' : Image ( shape = ( 1280 , 1920 , 3 ), dtype = uint8 ),
'labels' : Sequence ({
'bbox' : BBoxFeature ( shape = ( 4 ,), dtype = float32 ),
'type' : ClassLabel ( shape = (), dtype = int64 , num_classes = 5 ),
}),
}),
'camera_FRONT_LEFT' : FeaturesDict ({
'image' : Image ( shape = ( 1280 , 1920 , 3 ), dtype = uint8 ),
'labels' : Sequence ({
'bbox' : BBoxFeature ( shape = ( 4 ,), dtype = float32 ),
'type' : ClassLabel ( shape = (), dtype = int64 , num_classes = 5 ),
}),
}),
'camera_FRONT_RIGHT' : FeaturesDict ({
'image' : Image ( shape = ( 1280 , 1920 , 3 ), dtype = uint8 ),
'labels' : Sequence ({
'bbox' : BBoxFeature ( shape = ( 4 ,), dtype = float32 ),
'type' : ClassLabel ( shape = (), dtype = int64 , num_classes = 5 ),
}),
}),
'camera_SIDE_LEFT' : FeaturesDict ({
'image' : Image ( shape = ( 886 , 1920 , 3 ), dtype = uint8 ),
'labels' : Sequence ({
'bbox' : BBoxFeature ( shape = ( 4 ,), dtype = float32 ),
'type' : ClassLabel ( shape = (), dtype = int64 , num_classes = 5 ),
}),
}),
'camera_SIDE_RIGHT' : FeaturesDict ({
'image' : Image ( shape = ( 886 , 1920 , 3 ), dtype = uint8 ),
'labels' : Sequence ({
'bbox' : BBoxFeature ( shape = ( 4 ,), dtype = float32 ),
'type' : ClassLabel ( shape = (), dtype = int64 , num_classes = 5 ),
}),
}),
'context' : FeaturesDict ({
'name' : Text ( shape = (), dtype = string ),
}),
'timestamp_micros' : int64 ,
})
Feature
Class
Shape
Dtype
Description
FeaturesDict
camera_FRONT
FeaturesDict
camera_FRONT/image
Image
(1280, 1920, 3)
uint8
camera_FRONT/labels
Sequence
camera_FRONT/labels/bbox
BBoxFeature
(4,)
float32
camera_FRONT/labels/type
ClassLabel
int64
camera_FRONT_LEFT
FeaturesDict
camera_FRONT_LEFT/image
Image
(1280, 1920, 3)
uint8
camera_FRONT_LEFT/labels
Sequence
camera_FRONT_LEFT/labels/bbox
BBoxFeature
(4,)
float32
camera_FRONT_LEFT/labels/type
ClassLabel
int64
camera_FRONT_RIGHT
FeaturesDict
camera_FRONT_RIGHT/image
Image
(1280, 1920, 3)
uint8
camera_FRONT_RIGHT/labels
Sequence
camera_FRONT_RIGHT/labels/bbox
BBoxFeature
(4,)
float32
camera_FRONT_RIGHT/labels/type
ClassLabel
int64
camera_SIDE_LEFT
FeaturesDict
camera_SIDE_LEFT/image
Image
(886, 1920, 3)
uint8
camera_SIDE_LEFT/labels
Sequence
camera_SIDE_LEFT/labels/bbox
BBoxFeature
(4,)
float32
camera_SIDE_LEFT/labels/type
ClassLabel
int64
camera_SIDE_RIGHT
FeaturesDict
camera_SIDE_RIGHT/image
Image
(886, 1920, 3)
uint8
camera_SIDE_RIGHT/labels
Sequence
camera_SIDE_RIGHT/labels/bbox
BBoxFeature
(4,)
float32
camera_SIDE_RIGHT/labels/type
ClassLabel
int64
context
FeaturesDict
context/name
Text
string
timestamp_micros
Tensor
int64
@InProceedings { Sun_2020_CVPR ,
author = { Sun , Pei and Kretzschmar , Henrik and Dotiwalla , Xerxes and Chouard , Aurelien and Patnaik , Vijaysai and Tsui , Paul and Guo , James and Zhou , Yin and Chai , Yuning and Caine , Benjamin and Vasudevan , Vijay and Han , Wei and Ngiam , Jiquan and Zhao , Hang and Timofeev , Aleksei and Ettinger , Scott and Krivokon , Maxim and Gao , Amy and Joshi , Aditya and Zhang , Yu and Shlens , Jonathon and Chen , Zhifeng and Anguelov , Dragomir } ,
title = { Scalability in Perception for Autonomous Driving : Waymo Open Dataset } ,
booktitle = { The IEEE / CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) } ,
month = { June } ,
year = { 2020 }
}
waymo_open_dataset/v1.2 (default config)
Split
Examples
'train'
158,081
'validation'
39,987
waymo_open_dataset/v1.1
Split
Examples
'train'
158,081
'validation'
39,987
waymo_open_dataset/v1.0
Config description : Waymo Open Dataset v1.0 This dataset is also
available in pre-processed format, making it faster to load, if you select
the correct data_dir:
tfds . load ( 'waymo_open_dataset/v1.0' , data_dir = 'gs://waymo_open_dataset_v_1_0_0_individual_files/tensorflow_datasets' )
Dataset size : 34.73 GiB
Splits :
Split
Examples
'train'
14,884
'validation'
4,954
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License , and code samples are licensed under the Apache 2.0 License . For details, see the Google Developers Site Policies . Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[null,null,["Last updated 2024-06-01 UTC."],[],[],null,["# waymo_open_dataset\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe Waymo Open Dataset is comprised of high resolution sensor data collected by\nWaymo self-driving cars in a wide variety of conditions. This data is licensed\nfor non-commercial use.\n| **Warning:** this dataset requires additional authorization and registration. Please look at tfds documentation for accessing GCS, and afterwards, please register via \u003chttps://waymo.com/open/licensing/\u003e\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/waymo-open-dataset)\n\n- **Homepage** : \u003chttp://www.waymo.com/open/\u003e\n\n- **Source code** :\n [`tfds.object_detection.WaymoOpenDataset`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/object_detection/waymo_open_dataset.py)\n\n- **Versions**:\n\n - **`0.2.0`** (default): No release notes.\n- **Download size** : `Unknown size`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Feature structure**:\n\n FeaturesDict({\n 'camera_FRONT': FeaturesDict({\n 'image': Image(shape=(1280, 1920, 3), dtype=uint8),\n 'labels': Sequence({\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'type': ClassLabel(shape=(), dtype=int64, num_classes=5),\n }),\n }),\n 'camera_FRONT_LEFT': FeaturesDict({\n 'image': Image(shape=(1280, 1920, 3), dtype=uint8),\n 'labels': Sequence({\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'type': ClassLabel(shape=(), dtype=int64, num_classes=5),\n }),\n }),\n 'camera_FRONT_RIGHT': FeaturesDict({\n 'image': Image(shape=(1280, 1920, 3), dtype=uint8),\n 'labels': Sequence({\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'type': ClassLabel(shape=(), dtype=int64, num_classes=5),\n }),\n }),\n 'camera_SIDE_LEFT': FeaturesDict({\n 'image': Image(shape=(886, 1920, 3), dtype=uint8),\n 'labels': Sequence({\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'type': ClassLabel(shape=(), dtype=int64, num_classes=5),\n }),\n }),\n 'camera_SIDE_RIGHT': FeaturesDict({\n 'image': Image(shape=(886, 1920, 3), dtype=uint8),\n 'labels': Sequence({\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'type': ClassLabel(shape=(), dtype=int64, num_classes=5),\n }),\n }),\n 'context': FeaturesDict({\n 'name': Text(shape=(), dtype=string),\n }),\n 'timestamp_micros': int64,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------------------------|--------------|-----------------|---------|-------------|\n| | FeaturesDict | | | |\n| camera_FRONT | FeaturesDict | | | |\n| camera_FRONT/image | Image | (1280, 1920, 3) | uint8 | |\n| camera_FRONT/labels | Sequence | | | |\n| camera_FRONT/labels/bbox | BBoxFeature | (4,) | float32 | |\n| camera_FRONT/labels/type | ClassLabel | | int64 | |\n| camera_FRONT_LEFT | FeaturesDict | | | |\n| camera_FRONT_LEFT/image | Image | (1280, 1920, 3) | uint8 | |\n| camera_FRONT_LEFT/labels | Sequence | | | |\n| camera_FRONT_LEFT/labels/bbox | BBoxFeature | (4,) | float32 | |\n| camera_FRONT_LEFT/labels/type | ClassLabel | | int64 | |\n| camera_FRONT_RIGHT | FeaturesDict | | | |\n| camera_FRONT_RIGHT/image | Image | (1280, 1920, 3) | uint8 | |\n| camera_FRONT_RIGHT/labels | Sequence | | | |\n| camera_FRONT_RIGHT/labels/bbox | BBoxFeature | (4,) | float32 | |\n| camera_FRONT_RIGHT/labels/type | ClassLabel | | int64 | |\n| camera_SIDE_LEFT | FeaturesDict | | | |\n| camera_SIDE_LEFT/image | Image | (886, 1920, 3) | uint8 | |\n| camera_SIDE_LEFT/labels | Sequence | | | |\n| camera_SIDE_LEFT/labels/bbox | BBoxFeature | (4,) | float32 | |\n| camera_SIDE_LEFT/labels/type | ClassLabel | | int64 | |\n| camera_SIDE_RIGHT | FeaturesDict | | | |\n| camera_SIDE_RIGHT/image | Image | (886, 1920, 3) | uint8 | |\n| camera_SIDE_RIGHT/labels | Sequence | | | |\n| camera_SIDE_RIGHT/labels/bbox | BBoxFeature | (4,) | float32 | |\n| camera_SIDE_RIGHT/labels/type | ClassLabel | | int64 | |\n| context | FeaturesDict | | | |\n| context/name | Text | | string | |\n| timestamp_micros | Tensor | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Citation**:\n\n @InProceedings{Sun_2020_CVPR,\n author = {Sun, Pei and Kretzschmar, Henrik and Dotiwalla, Xerxes and Chouard, Aurelien and Patnaik, Vijaysai and Tsui, Paul and Guo, James and Zhou, Yin and Chai, Yuning and Caine, Benjamin and Vasudevan, Vijay and Han, Wei and Ngiam, Jiquan and Zhao, Hang and Timofeev, Aleksei and Ettinger, Scott and Krivokon, Maxim and Gao, Amy and Joshi, Aditya and Zhang, Yu and Shlens, Jonathon and Chen, Zhifeng and Anguelov, Dragomir},\n title = {Scalability in Perception for Autonomous Driving: Waymo Open Dataset},\n booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},\n month = {June},\n year = {2020}\n }\n\nwaymo_open_dataset/v1.2 (default config)\n----------------------------------------\n\n- **Config description**: Waymo Open Dataset v1.2\n\n- **Dataset size** : `336.62 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'train'` | 158,081 |\n| `'validation'` | 39,987 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nwaymo_open_dataset/v1.1\n-----------------------\n\n- **Config description**: Waymo Open Dataset v1.1\n\n- **Dataset size** : `336.62 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'train'` | 158,081 |\n| `'validation'` | 39,987 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nwaymo_open_dataset/v1.0\n-----------------------\n\n- **Config description**: Waymo Open Dataset v1.0 This dataset is also available in pre-processed format, making it faster to load, if you select the correct data_dir:\n\n tfds.load('waymo_open_dataset/v1.0', data_dir='gs://waymo_open_dataset_v_1_0_0_individual_files/tensorflow_datasets')\n\n- **Dataset size** : `34.73 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'train'` | 14,884 |\n| `'validation'` | 4,954 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]