winogrande
Stay organized with collections
Save and categorize content based on your preferences.
The WinoGrande, a large-scale dataset of 44k problems, inspired by the original
Winograd Schema Challenge design, but adjusted to improve both the scale and the
hardness of the dataset.
Split |
Examples |
'test' |
1,767 |
'train_l' |
10,234 |
'train_m' |
2,558 |
'train_s' |
640 |
'train_xl' |
40,398 |
'train_xs' |
160 |
'validation' |
1,267 |
FeaturesDict({
'label': ClassLabel(shape=(), dtype=int64, num_classes=2),
'option1': Text(shape=(), dtype=string),
'option2': Text(shape=(), dtype=string),
'sentence': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
label |
ClassLabel |
|
int64 |
|
option1 |
Text |
|
string |
|
option2 |
Text |
|
string |
|
sentence |
Text |
|
string |
|
@article{sakaguchi2019winogrande,
title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin},
journal={arXiv preprint arXiv:1907.10641},
year={2019}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-12-11 UTC.
[null,null,["Last updated 2024-12-11 UTC."],[],[],null,["# winogrande\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe WinoGrande, a large-scale dataset of 44k problems, inspired by the original\nWinograd Schema Challenge design, but adjusted to improve both the scale and the\nhardness of the dataset.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/winogrande)\n\n- **Homepage** :\n \u003chttp://winogrande.allenai.org/\u003e\n\n- **Source code** :\n [`tfds.text.Winogrande`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/winogrande.py)\n\n- **Versions**:\n\n - **`1.2.0`** (default): Updated source file with more data and new checksums.\n- **Download size** : `3.24 MiB`\n\n- **Dataset size** : `9.97 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 1,767 |\n| `'train_l'` | 10,234 |\n| `'train_m'` | 2,558 |\n| `'train_s'` | 640 |\n| `'train_xl'` | 40,398 |\n| `'train_xs'` | 160 |\n| `'validation'` | 1,267 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'option1': Text(shape=(), dtype=string),\n 'option2': Text(shape=(), dtype=string),\n 'sentence': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| label | ClassLabel | | int64 | |\n| option1 | Text | | string | |\n| option2 | Text | | string | |\n| sentence | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{sakaguchi2019winogrande,\n title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\n author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin},\n journal={arXiv preprint arXiv:1907.10641},\n year={2019}\n }"]]