wordnet
Stay organized with collections
Save and categorize content based on your preferences.
WordNet is a large lexical database of English. Nouns, verbs, adjectives and
adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a
distinct concept. Synsets are interlinked by means of conceptual-semantic and
lexical relations.
FeaturesDict({
'lhs': Text(shape=(), dtype=string),
'relation': Text(shape=(), dtype=string),
'rhs': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
lhs |
Text |
|
string |
|
relation |
Text |
|
string |
|
rhs |
Text |
|
string |
|
wordnet/WN18 (default config)
Config description: This WORDNET TENSOR DATA consists of a collection of
triplets (synset, relation_type, triplet) extracted from WordNet 3.0
(http://wordnet.princeton.edu). This data set can be seen as a 3-mode tensor
depicting ternary relationships between synsets. See
https://everest.hds.utc.fr/doku.php?id=en:transe.
Dataset size: 11.07 MiB
Splits:
Split |
Examples |
'test' |
5,000 |
'train' |
141,442 |
'validation' |
5,000 |
@article{10.1145/219717.219748,
author = {Miller, George A.},
title = {WordNet: A Lexical Database for English},
year = {1995},
issue_date = {Nov. 1995},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {38},
number = {11},
issn = {0001-0782},
url = {https://doi.org/10.1145/219717.219748},
doi = {10.1145/219717.219748},
journal = {Commun. ACM},
month = nov,
pages = {39--41},
numpages = {3}
}
@incollection{NIPS2013_5071,
title = {Translating Embeddings for Modeling Multi-relational Data},
author = {Bordes, Antoine and Usunier, Nicolas and Garcia-Duran, Alberto and Weston, Jason and Yakhnenko, Oksana},
booktitle = {Advances in Neural Information Processing Systems 26},
editor = {C. J. C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K. Q. Weinberger},
pages = {2787--2795},
year = {2013},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf}
}
wordnet/WN18RR
Split |
Examples |
'test' |
3,134 |
'train' |
86,835 |
'validation' |
3,034 |
@article{10.1145/219717.219748,
author = {Miller, George A.},
title = {WordNet: A Lexical Database for English},
year = {1995},
issue_date = {Nov. 1995},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {38},
number = {11},
issn = {0001-0782},
url = {https://doi.org/10.1145/219717.219748},
doi = {10.1145/219717.219748},
journal = {Commun. ACM},
month = nov,
pages = {39--41},
numpages = {3}
}
@inproceedings{dettmers2018conve,
Author = {Dettmers, Tim and Pasquale, Minervini and Pontus, Stenetorp and Riedel, Sebastian},
Booktitle = {Proceedings of the 32th AAAI Conference on Artificial Intelligence},
Title = {Convolutional 2D Knowledge Graph Embeddings},
Url = {https://arxiv.org/abs/1707.01476},
Year = {2018},
pages = {1811--1818},
Month = {February}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[null,null,["Last updated 2022-12-06 UTC."],[],[],null,["# wordnet\n\n\u003cbr /\u003e\n\n- **Description**:\n\nWordNet is a large lexical database of English. Nouns, verbs, adjectives and\nadverbs are grouped into sets of cognitive synonyms (synsets), each expressing a\ndistinct concept. Synsets are interlinked by means of conceptual-semantic and\nlexical relations.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/wn18)\n\n- **Homepage** :\n \u003chttps://wordnet.princeton.edu/\u003e\n\n- **Source code** :\n [`tfds.text.Wordnet`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/wordnet.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): No release notes.\n- **Download size** : `3.99 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Feature structure**:\n\n FeaturesDict({\n 'lhs': Text(shape=(), dtype=string),\n 'relation': Text(shape=(), dtype=string),\n 'rhs': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| lhs | Text | | string | |\n| relation | Text | | string | |\n| rhs | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\nwordnet/WN18 (default config)\n-----------------------------\n\n- **Config description** : This WORDNET TENSOR DATA consists of a collection of\n triplets (synset, relation_type, triplet) extracted from WordNet 3.0\n (\u003chttp://wordnet.princeton.edu\u003e). This data set can be seen as a 3-mode tensor\n depicting ternary relationships between synsets. See\n \u003chttps://everest.hds.utc.fr/doku.php?id=en\u003e:transe.\n\n- **Dataset size** : `11.07 MiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 5,000 |\n| `'train'` | 141,442 |\n| `'validation'` | 5,000 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{10.1145/219717.219748,\n author = {Miller, George A.},\n title = {WordNet: A Lexical Database for English},\n year = {1995},\n issue_date = {Nov. 1995},\n publisher = {Association for Computing Machinery},\n address = {New York, NY, USA},\n volume = {38},\n number = {11},\n issn = {0001-0782},\n url = {https://doi.org/10.1145/219717.219748},\n doi = {10.1145/219717.219748},\n journal = {Commun. ACM},\n month = nov,\n pages = {39--41},\n numpages = {3}\n }\n\n @incollection{NIPS2013_5071,\n title = {Translating Embeddings for Modeling Multi-relational Data},\n author = {Bordes, Antoine and Usunier, Nicolas and Garcia-Duran, Alberto and Weston, Jason and Yakhnenko, Oksana},\n booktitle = {Advances in Neural Information Processing Systems 26},\n editor = {C. J. C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K. Q. Weinberger},\n pages = {2787--2795},\n year = {2013},\n publisher = {Curran Associates, Inc.},\n url = {http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf}\n }\n\nwordnet/WN18RR\n--------------\n\n- **Config description** : Same as WN18 but fixes test leakage through inverse\n relations. See \u003chttps://github.com/TimDettmers/ConvE\u003e\n\n- **Dataset size** : `7.02 MiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 3,134 |\n| `'train'` | 86,835 |\n| `'validation'` | 3,034 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{10.1145/219717.219748,\n author = {Miller, George A.},\n title = {WordNet: A Lexical Database for English},\n year = {1995},\n issue_date = {Nov. 1995},\n publisher = {Association for Computing Machinery},\n address = {New York, NY, USA},\n volume = {38},\n number = {11},\n issn = {0001-0782},\n url = {https://doi.org/10.1145/219717.219748},\n doi = {10.1145/219717.219748},\n journal = {Commun. ACM},\n month = nov,\n pages = {39--41},\n numpages = {3}\n }\n\n @inproceedings{dettmers2018conve,\n Author = {Dettmers, Tim and Pasquale, Minervini and Pontus, Stenetorp and Riedel, Sebastian},\n Booktitle = {Proceedings of the 32th AAAI Conference on Artificial Intelligence},\n Title = {Convolutional 2D Knowledge Graph Embeddings},\n Url = {https://arxiv.org/abs/1707.01476},\n Year = {2018},\n pages = {1811--1818},\n Month = {February}\n }"]]