tensorflow::
#include <nn_ops.h>
Computes the gradients of convolution with respect to the input.
Summary
Args:
- scope: A Scope object
- input_sizes: An integer vector representing the shape of input, whereinputis a 4-D[batch, height, width, channels]tensor.
- filter: 4-D with shape [filter_height, filter_width, in_channels, out_channels].
- out_backprop: 4-D with shape [batch, out_height, out_width, out_channels]. Gradients w.r.t. the output of the convolution.
- strides: The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format.
- padding: The type of padding algorithm to use.
Optional attributes (see Attrs):
- explicit_paddings: If paddingis"EXPLICIT", the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension isexplicit_paddings[2 * i]andexplicit_paddings[2 * i + 1], respectively. Ifpaddingis not"EXPLICIT",explicit_paddingsmust be empty.
- data_format: Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width].
- dilations: 1-D tensor of length 4. The dilation factor for each dimension of input. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value ofdata_format, see above for details. Dilations in the batch and depth dimensions must be 1.
Returns:
- Output: 4-D with shape- [batch, in_height, in_width, in_channels]. Gradient w.r.t. the input of the convolution.
| Constructors and Destructors | |
|---|---|
| Conv2DBackpropInput(const ::tensorflow::Scope & scope, ::tensorflow::Input input_sizes, ::tensorflow::Input filter, ::tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding) | |
| Conv2DBackpropInput(const ::tensorflow::Scope & scope, ::tensorflow::Input input_sizes, ::tensorflow::Input filter, ::tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv2DBackpropInput::Attrs & attrs) | 
| Public attributes | |
|---|---|
| operation | |
| output | |
| Public functions | |
|---|---|
| node() const  | ::tensorflow::Node * | 
| operator::tensorflow::Input() const  |  | 
| operator::tensorflow::Output() const  |  | 
| Public static functions | |
|---|---|
| DataFormat(StringPiece x) | |
| Dilations(const gtl::ArraySlice< int > & x) | |
| ExplicitPaddings(const gtl::ArraySlice< int > & x) | |
| UseCudnnOnGpu(bool x) | |
| Structs | |
|---|---|
| tensorflow:: | Optional attribute setters for Conv2DBackpropInput. | 
Public attributes
operation
Operation operation
output
::tensorflow::Output output
Public functions
Conv2DBackpropInput
Conv2DBackpropInput( const ::tensorflow::Scope & scope, ::tensorflow::Input input_sizes, ::tensorflow::Input filter, ::tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding )
Conv2DBackpropInput
Conv2DBackpropInput( const ::tensorflow::Scope & scope, ::tensorflow::Input input_sizes, ::tensorflow::Input filter, ::tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv2DBackpropInput::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
DataFormat
Attrs DataFormat( StringPiece x )
Dilations
Attrs Dilations( const gtl::ArraySlice< int > & x )
ExplicitPaddings
Attrs ExplicitPaddings( const gtl::ArraySlice< int > & x )
UseCudnnOnGpu
Attrs UseCudnnOnGpu( bool x )