- คำอธิบาย :
ชุดข้อมูลผลิตภัณฑ์ออนไลน์ของ Stanford
เอกสารประกอบเพิ่มเติม : สำรวจในเอกสารด้วยรหัส
ซอร์สโค้ด :
tfds.datasets.stanford_online_products.Builder
รุ่น :
-
1.0.0
(ค่าเริ่มต้น): ไม่มีบันทึกประจำรุ่น
-
ขนาดการดาวน์โหลด :
2.87 GiB
ขนาดชุดข้อมูล :
2.89 GiB
แคชอัตโนมัติ ( เอกสาร ): No
แยก :
แยก | ตัวอย่าง |
---|---|
'test' | 60,502 |
'train' | 59,551 |
- โครงสร้างคุณสมบัติ :
FeaturesDict({
'class_id': ClassLabel(shape=(), dtype=int64, num_classes=22634),
'image': Image(shape=(None, None, 3), dtype=uint8),
'super_class_id': ClassLabel(shape=(), dtype=int64, num_classes=12),
'super_class_id/num': ClassLabel(shape=(), dtype=int64, num_classes=12),
})
- เอกสารคุณสมบัติ :
คุณสมบัติ | ระดับ | รูปร่าง | ประเภทD | คำอธิบาย |
---|---|---|---|---|
คุณสมบัติDict | ||||
class_id | ClassLabel | int64 | ||
ภาพ | ภาพ | (ไม่มี ไม่มี 3) | uint8 | |
ซุปเปอร์คลาส_id | ClassLabel | int64 | ||
super_class_id/หมายเลข | ClassLabel | int64 |
คีย์ภายใต้การดูแล (ดู
as_supervised
doc ):None
รูป ( tfds.show_examples ):
- ตัวอย่าง ( tfds.as_dataframe ):
- การอ้างอิง :
@inproceedings{song2016deep,
author = {Song, Hyun Oh and Xiang, Yu and Jegelka, Stefanie and Savarese, Silvio},
title = {Deep Metric Learning via Lifted Structured Feature Embedding},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2016}
}