utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
מניפולציה של PR2 על השולחן (קיפול בד, קטיף)
לְפַצֵל | דוגמאות |
---|
'train' | 192 |
'val' | 48 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end effector pos, 3x robot rpy angles, 1x gripper open/close command, 1x terminal action].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [3x end effector pos, 3x robot rpy angles, 1x gripper position].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
תכונה | מַחלָקָה | צוּרָה | Dtype | תֵאוּר |
---|
| FeaturesDict | | | |
episode_metadata | FeaturesDict | | | |
episode_metadata/file_path | טֶקסט | | חוּט | נתיב לקובץ הנתונים המקורי. |
צעדים | מערך נתונים | | | |
צעדים/פעולה | מוֹתֵחַ | (8,) | לצוף32 | פעולת רובוט, מורכבת מ-3x pos end effector, 3x רובוט rpy angles, פיקוד פתיחה/סגירה של תפסן, 1x פעולת קצה]. |
צעדים/הנחה | סקלר | | לצוף32 | הנחה אם ניתנת, ברירת המחדל היא 1. |
צעדים/הוא_ראשון | מוֹתֵחַ | | bool | |
צעדים/הוא_אחרון | מוֹתֵחַ | | bool | |
steps/is_terminal | מוֹתֵחַ | | bool | |
שלבים/הטבעת_שפה | מוֹתֵחַ | (512,) | לצוף32 | הטבעת שפת Kona. ראה https://tfhub.dev/google/universal-sentence-encoder-large/5 |
שלבים/הוראת_שפה | טֶקסט | | חוּט | הוראת שפה. |
צעדים/תצפית | FeaturesDict | | | |
צעדים/תצפית/תמונה | תְמוּנָה | (128, 128, 3) | uint8 | תצפית RGB של מצלמה ראשית. |
צעדים/תצפית/מצב | מוֹתֵחַ | (7,) | לצוף32 | מצב רובוט, מורכב מ-3x pos end effector, 3x רובוט rpy angles, 1x position gripper]. |
צעדים/פרס | סקלר | | לצוף32 | תגמול אם מסופק, 1 בשלב האחרון להדגמות. |
@misc{oh2023pr2utokyodatasets,
author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},
title={X-Embodiment U-Tokyo PR2 Datasets},
year={2023},
url={https://github.com/ojh6404/rlds_dataset_builder},
}
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2024-12-18 (שעון UTC).
[null,null,["עדכון אחרון: 2024-12-18 (שעון UTC)."],[],[],null,["# utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds\n\n\u003cbr /\u003e\n\n- **Description**:\n\nPR2 tabletop manipulation (folding cloth, picking)\n\n- **Homepage** : [--](/datasets/catalog/--)\n\n- **Source code** :\n [`tfds.robotics.rtx.UtokyoPr2TabletopManipulationConvertedExternallyToRlds`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `829.37 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 192 |\n| `'val'` | 48 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end effector pos, 3x robot rpy angles, 1x gripper open/close command, 1x terminal action].),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),\n 'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [3x end effector pos, 3x robot rpy angles, 1x gripper position].),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------------------|--------------|---------------|---------|----------------------------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (8,) | float32 | Robot action, consists of \\[3x end effector pos, 3x robot rpy angles, 1x gripper open/close command, 1x terminal action\\]. |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Language Instruction. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (128, 128, 3) | uint8 | Main camera RGB observation. |\n| steps/observation/state | Tensor | (7,) | float32 | Robot state, consists of \\[3x end effector pos, 3x robot rpy angles, 1x gripper position\\]. |\n| steps/reward | Scalar | | float32 | Reward if provided, 1 on final step for demos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @misc{oh2023pr2utokyodatasets,\n author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},\n title={X-Embodiment U-Tokyo PR2 Datasets},\n year={2023},\n url={https://github.com/ojh6404/rlds_dataset_builder},\n }"]]