তথ্যসূত্র:
webnlg_challenge_2017
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:web_nlg/webnlg_challenge_2017')
- বর্ণনা :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 0.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'dev' | 872 |
'test' | 4615 |
'train' | 6940 |
- বৈশিষ্ট্য :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
মুক্তি_v1
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:web_nlg/release_v1')
- বর্ণনা :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 0.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'full' | 14237 |
- বৈশিষ্ট্য :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
মুক্তি_v2
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:web_nlg/release_v2')
- বর্ণনা :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 0.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'dev' | 1619 |
'test' | 1600 |
'train' | 12876 |
- বৈশিষ্ট্য :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
release_v2_constrained
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:web_nlg/release_v2_constrained')
- বর্ণনা :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 0.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'dev' | 1594 |
'test' | 1606 |
'train' | 12895 |
- বৈশিষ্ট্য :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
মুক্তি_v2.1
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:web_nlg/release_v2.1')
- বর্ণনা :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 0.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'dev' | 1619 |
'test' | 1600 |
'train' | 12876 |
- বৈশিষ্ট্য :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
release_v2.1_constrained
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:web_nlg/release_v2.1_constrained')
- বর্ণনা :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 0.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'dev' | 1594 |
'test' | 1606 |
'train' | 12895 |
- বৈশিষ্ট্য :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
মুক্তি_v3.0_en
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:web_nlg/release_v3.0_en')
- বর্ণনা :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 0.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'dev' | 1667 |
'test' | 5713 |
'train' | 13211 |
- বৈশিষ্ট্য :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}
release_v3.0_ru
TFDS এ এই ডেটাসেট লোড করতে নিম্নলিখিত কমান্ডটি ব্যবহার করুন:
ds = tfds.load('huggingface:web_nlg/release_v3.0_ru')
- বর্ণনা :
The WebNLG challenge consists in mapping data to text. The training data consists
of Data/Text pairs where the data is a set of triples extracted from DBpedia and the text is a verbalisation
of these triples. For instance, given the 3 DBpedia triples shown in (a), the aim is to generate a text such as (b).
a. (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace San_Antonio) (John_E_Blaha occupation Fighter_pilot)
b. John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot
As the example illustrates, the task involves specific NLG subtasks such as sentence segmentation
(how to chunk the input data into sentences), lexicalisation (of the DBpedia properties),
aggregation (how to avoid repetitions) and surface realisation
(how to build a syntactically correct and natural sounding text).
- লাইসেন্স : কোনো পরিচিত লাইসেন্স নেই
- সংস্করণ : 0.0.0
- বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'dev' | 790 |
'test' | 3410 |
'train' | 5573 |
- বৈশিষ্ট্য :
{
"category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"size": {
"dtype": "int32",
"id": null,
"_type": "Value"
},
"eid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"original_triple_sets": {
"feature": {
"otriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"modified_triple_sets": {
"feature": {
"mtriple_set": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"shape": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"shape_type": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lex": {
"feature": {
"comment": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lid": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"lang": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"test_category": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"dbpedia_links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"links": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}