iamlab_cmu_pickup_insert_converted_externally_to_rlds

  • বর্ণনা :

ফ্রাঙ্কা বস্তু বাছাই এবং সন্নিবেশ কার্য

বিভক্ত উদাহরণ
'train' 631
  • বৈশিষ্ট্য গঠন :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end-effector position, 4x end-effector quaternion, 1x gripper open/close].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(360, 640, 3), dtype=uint8, description=Main camera RGB observation.),
            'state': Tensor(shape=(20,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper status, 6x joint torques, 6x end-effector force].),
            'wrist_image': Image(shape=(240, 320, 3), dtype=uint8, description=Wrist camera RGB observation.),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
  • বৈশিষ্ট্য ডকুমেন্টেশন :
বৈশিষ্ট্য ক্লাস আকৃতি ডিটাইপ বর্ণনা
ফিচারসডিক্ট
episode_metadata ফিচারসডিক্ট
episode_metadata/file_path পাঠ্য স্ট্রিং মূল ডেটা ফাইলের পথ।
পদক্ষেপ ডেটাসেট
পদক্ষেপ/ক্রিয়া টেনসর (8,) float32 রোবট অ্যাকশন, [3x এন্ড-ইফেক্টর পজিশন, 4x এন্ড-ইফেক্টর কোয়াটারনিয়ন, 1x গ্রিপার ওপেন/ক্লোজ] নিয়ে গঠিত।
পদক্ষেপ/ছাড় স্কেলার float32 ডিসকাউন্ট দেওয়া হলে, ডিফল্ট 1.
steps/is_first টেনসর bool
ধাপ/শেষ_শেষ টেনসর bool
steps/is_terminal টেনসর bool
পদক্ষেপ/ভাষা_এম্বেডিং টেনসর (512,) float32 কোন ভাষা এম্বেডিং. https://tfhub.dev/google/universal-sentence-encoder-large/5 দেখুন
পদক্ষেপ/ভাষা_নির্দেশ পাঠ্য স্ট্রিং ভাষার নির্দেশনা।
পদক্ষেপ/পর্যবেক্ষণ ফিচারসডিক্ট
পদক্ষেপ/পর্যবেক্ষণ/চিত্র ছবি (360, 640, 3) uint8 প্রধান ক্যামেরা আরজিবি পর্যবেক্ষণ।
পদক্ষেপ/পর্যবেক্ষণ/রাষ্ট্র টেনসর (20,) float32 রোবট অবস্থা, [7x রোবট জয়েন্ট অ্যাঙ্গেল, 1x গ্রিপার স্ট্যাটাস, 6x জয়েন্ট টর্ক, 6x এন্ড-ইফেক্টর বল] নিয়ে গঠিত।
পদক্ষেপ/পর্যবেক্ষণ/কব্জি_চিত্র ছবি (240, 320, 3) uint8 কব্জি ক্যামেরা আরজিবি পর্যবেক্ষণ।
পদক্ষেপ/পুরস্কার স্কেলার float32 প্রদান করা হলে পুরস্কার, ডেমোর জন্য চূড়ান্ত ধাপে 1।
  • উদ্ধৃতি :
@inproceedings{
saxena2023multiresolution,
title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
author={Saumya Saxena and Mohit Sharma and Oliver Kroemer},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=WuBv9-IGDUA}
}