প্রোটিন_নেট
সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
প্রোটিননেট হল প্রোটিন গঠনের মেশিন লার্নিংয়ের জন্য একটি প্রমিত ডেটা সেট। এটি প্রোটিন সিকোয়েন্স, স্ট্রাকচার (সেকেন্ডারি এবং টারশিয়ারি), মাল্টিপল সিকোয়েন্স অ্যালাইনমেন্ট (MSAs), পজিশন-স্পেসিফিক স্কোরিং ম্যাট্রিক্স (PSSMs), এবং প্রমিত ট্রেনিং/ ভ্যালিডেশন/ টেস্ট স্প্লিট প্রদান করে। প্রোটিননেট দ্বি-বার্ষিক CASP মূল্যায়নের উপর ভিত্তি করে তৈরি করে, যা সাম্প্রতিক সমাধান করা কিন্তু সর্বজনীনভাবে অনুপলব্ধ প্রোটিন কাঠামোর অন্ধ ভবিষ্যদ্বাণী করে, যা পরীক্ষা সেট প্রদান করে যা গণনামূলক পদ্ধতির সীমানায় ঠেলে দেয়। এটি ডেটা সেটের একটি সিরিজ হিসাবে সংগঠিত হয়, CASP 7 থেকে 12 পর্যন্ত বিস্তৃত (দশ বছরের সময়কালের মধ্যে), ডেটা সেট আকারের একটি পরিসীমা প্রদান করতে যা তুলনামূলকভাবে ডেটা দুর্বল এবং ডেটা সমৃদ্ধ শাসনব্যবস্থায় নতুন পদ্ধতির মূল্যায়ন সক্ষম করে।
FeaturesDict({
'evolutionary': Tensor(shape=(None, 21), dtype=float32),
'id': Text(shape=(), dtype=string),
'length': int32,
'mask': Tensor(shape=(None,), dtype=bool),
'primary': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=20)),
'tertiary': Tensor(shape=(None, 3), dtype=float32),
})
বৈশিষ্ট্য | ক্লাস | আকৃতি | ডিটাইপ | বর্ণনা |
---|
| ফিচারসডিক্ট | | | |
বিবর্তনীয় | টেনসর | (কোনটি নয়, 21) | float32 | |
আইডি | পাঠ্য | | স্ট্রিং | |
দৈর্ঘ্য | টেনসর | | int32 | |
মুখোশ | টেনসর | (কোনটিই নয়,) | bool | |
প্রাথমিক | সিকোয়েন্স (ক্লাসলেবেল) | (কোনটিই নয়,) | int64 | |
তৃতীয় | টেনসর | (কোনটিই নয়, 3) | float32 | |
@article{ProteinNet19,
title = { {ProteinNet}: a standardized data set for machine learning of protein structure},
author = {AlQuraishi, Mohammed},
journal = {BMC bioinformatics},
volume = {20},
number = {1},
pages = {1--10},
year = {2019},
publisher = {BioMed Central}
}
protein_net/casp7 (ডিফল্ট কনফিগারেশন)
বিভক্ত | উদাহরণ |
---|
'test' | 93 |
'train_100' | 34,557 |
'train_30' | 10,333 |
'train_50' | ১৩,০২৪ |
'train_70' | 15,207 |
'train_90' | 17,611 |
'train_95' | 17,938 |
'validation' | 224 |
প্রোটিন_নেট/ক্যাস্প৮
বিভক্ত | উদাহরণ |
---|
'test' | 120 |
'train_100' | ৪৮,০৮৭ |
'train_30' | 13,881 |
'train_50' | 17,970 |
'train_70' | 21,191 |
'train_90' | 24,556 |
'train_95' | ২৫,০৩৫ |
'validation' | 224 |
প্রোটিন_নেট/ক্যাস্প৯
বিভক্ত | উদাহরণ |
---|
'test' | 116 |
'train_100' | 60,350 |
'train_30' | 16,973 |
'train_50' | 22,172 |
'train_70' | 26,263 |
'train_90' | 30,513 |
'train_95' | 31,128 |
'validation' | 224 |
প্রোটিন_নেট/ক্যাস্প10
বিভক্ত | উদাহরণ |
---|
'test' | 95 |
'train_100' | 73,116 |
'train_30' | 19,495 |
'train_50' | 25,897 |
'train_70' | 31,001 |
'train_90' | 36,258 |
'train_95' | 37,033 |
'validation' | 224 |
প্রোটিন_নেট/ক্যাস্প11
বিভক্ত | উদাহরণ |
---|
'test' | 81 |
'train_100' | ৮৭,৫৭৩ |
'train_30' | 22,344 |
'train_50' | ২৯,৯৩৬ |
'train_70' | 36,005 |
'train_90' | 42,507 |
'train_95' | 43,544 |
'validation' | 224 |
প্রোটিন_নেট/ক্যাস্প12
বিভক্ত | উদাহরণ |
---|
'test' | 40 |
'train_100' | 104,059 |
'train_30' | 25,299 |
'train_50' | 34,039 |
'train_70' | 41,522 |
'train_90' | 49,600 |
'train_95' | 50,914 |
'validation' | 224 |
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2022-12-16 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2022-12-16 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],[],null,["# protein_net\n\n\u003cbr /\u003e\n\n- **Description**:\n\nProteinNet is a standardized data set for machine learning of protein structure.\nIt provides protein sequences, structures (secondary and tertiary), multiple\nsequence alignments (MSAs), position-specific scoring matrices (PSSMs), and\nstandardized training / validation / test splits. ProteinNet builds on the\nbiennial CASP assessments, which carry out blind predictions of recently solved\nbut publicly unavailable protein structures, to provide test sets that push the\nfrontiers of computational methodology. It is organized as a series of data\nsets, spanning CASP 7 through 12 (covering a ten-year period), to provide a\nrange of data set sizes that enable assessment of new methods in relatively data\npoor and data rich regimes.\n\n- **Homepage** :\n \u003chttps://github.com/aqlaboratory/proteinnet\u003e\n\n- **Source code** :\n [`tfds.datasets.protein_net.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/protein_net/protein_net_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Feature structure**:\n\n FeaturesDict({\n 'evolutionary': Tensor(shape=(None, 21), dtype=float32),\n 'id': Text(shape=(), dtype=string),\n 'length': int32,\n 'mask': Tensor(shape=(None,), dtype=bool),\n 'primary': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=20)),\n 'tertiary': Tensor(shape=(None, 3), dtype=float32),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------|----------------------|------------|---------|-------------|\n| | FeaturesDict | | | |\n| evolutionary | Tensor | (None, 21) | float32 | |\n| id | Text | | string | |\n| length | Tensor | | int32 | |\n| mask | Tensor | (None,) | bool | |\n| primary | Sequence(ClassLabel) | (None,) | int64 | |\n| tertiary | Tensor | (None, 3) | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('primary', 'tertiary')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Citation**:\n\n @article{ProteinNet19,\n title = { {ProteinNet}: a standardized data set for machine learning of protein structure},\n author = {AlQuraishi, Mohammed},\n journal = {BMC bioinformatics},\n volume = {20},\n number = {1},\n pages = {1--10},\n year = {2019},\n publisher = {BioMed Central}\n }\n\nprotein_net/casp7 (default config)\n----------------------------------\n\n- **Download size** : `3.18 GiB`\n\n- **Dataset size** : `2.53 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 93 |\n| `'train_100'` | 34,557 |\n| `'train_30'` | 10,333 |\n| `'train_50'` | 13,024 |\n| `'train_70'` | 15,207 |\n| `'train_90'` | 17,611 |\n| `'train_95'` | 17,938 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp8\n-----------------\n\n- **Download size** : `4.96 GiB`\n\n- **Dataset size** : `3.55 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 120 |\n| `'train_100'` | 48,087 |\n| `'train_30'` | 13,881 |\n| `'train_50'` | 17,970 |\n| `'train_70'` | 21,191 |\n| `'train_90'` | 24,556 |\n| `'train_95'` | 25,035 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp9\n-----------------\n\n- **Download size** : `6.65 GiB`\n\n- **Dataset size** : `4.54 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 116 |\n| `'train_100'` | 60,350 |\n| `'train_30'` | 16,973 |\n| `'train_50'` | 22,172 |\n| `'train_70'` | 26,263 |\n| `'train_90'` | 30,513 |\n| `'train_95'` | 31,128 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp10\n------------------\n\n- **Download size** : `8.65 GiB`\n\n- **Dataset size** : `5.57 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 95 |\n| `'train_100'` | 73,116 |\n| `'train_30'` | 19,495 |\n| `'train_50'` | 25,897 |\n| `'train_70'` | 31,001 |\n| `'train_90'` | 36,258 |\n| `'train_95'` | 37,033 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp11\n------------------\n\n- **Download size** : `10.81 GiB`\n\n- **Dataset size** : `6.72 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 81 |\n| `'train_100'` | 87,573 |\n| `'train_30'` | 22,344 |\n| `'train_50'` | 29,936 |\n| `'train_70'` | 36,005 |\n| `'train_90'` | 42,507 |\n| `'train_95'` | 43,544 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp12\n------------------\n\n- **Download size** : `13.18 GiB`\n\n- **Dataset size** : `8.05 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 40 |\n| `'train_100'` | 104,059 |\n| `'train_30'` | 25,299 |\n| `'train_50'` | 34,039 |\n| `'train_70'` | 41,522 |\n| `'train_90'` | 49,600 |\n| `'train_95'` | 50,914 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]