- Descrizione :
Nome completo: Simulazioni per effetti terapeutici personalizzati
Generato con il pacchetto R's Uplift: https://rdrr.io/cran/uplift/man/sim_pte.html
Il pacchetto può essere scaricato qui: https://cran.r-project.org/src/contrib/Archive/uplift/
Set di dati generato in R versione 4.1.2 con il seguente codice:
library(uplift)
set.seed(123)
train <- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
test <- sim_pte(n = 2000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)
train$treat <- ifelse(train$treat == 1, 2, 1)
test$treat <- ifelse(test$treat == 1, 2, 1)
train$y <- ifelse(train$y == 1, 2, 1)
test$y <- ifelse(test$y == 1, 2, 1)
train$ts = NULL
test$ts = NULL
Parametri:
-
n
= numero di campioni -
p
= numero di predittori -
ro
= covarianza tra predittori -
sigma
= moltiplicatore del termine di errore -
beta.den
= beta è moltiplicato per 1/beta.den
Creatore: Leo Guelman leo.guelman@gmail.com
Pagina iniziale : https://rdrr.io/cran/uplift/man/sim_pte.html
Codice sorgente :
tfds.datasets.simpte.Builder
Versioni :
-
1.0.0
(impostazione predefinita): versione iniziale.
-
Dimensioni del download :
Unknown size
Dimensione del set di dati :
1.04 MiB
Istruzioni per il download manuale : questo set di dati richiede di scaricare manualmente i dati di origine in
download_config.manual_dir
(il valore predefinito~/tensorflow_datasets/downloads/manual/
):
Scarica i dati di addestramento: sim_pte_train.csv e i dati di test: sim_pte_test.csv in ~/tensorflow_datasets/downloads/manual/.Auto-cache ( documentazione ): Sì
Divisioni :
Diviso | Esempi |
---|---|
'test' | 2.000 |
'train' | 1.000 |
- Struttura delle caratteristiche :
FeaturesDict({
'X1': float32,
'X10': float32,
'X11': float32,
'X12': float32,
'X13': float32,
'X14': float32,
'X15': float32,
'X16': float32,
'X17': float32,
'X18': float32,
'X19': float32,
'X2': float32,
'X20': float32,
'X3': float32,
'X4': float32,
'X5': float32,
'X6': float32,
'X7': float32,
'X8': float32,
'X9': float32,
'treat': int32,
'y': int32,
})
- Documentazione delle funzionalità :
Caratteristica | Classe | Forma | Tipo D | Descrizione |
---|---|---|---|---|
CaratteristicheDict | ||||
X1 | Tensore | galleggiante32 | ||
X10 | Tensore | galleggiante32 | ||
X11 | Tensore | galleggiante32 | ||
X12 | Tensore | galleggiante32 | ||
X13 | Tensore | galleggiante32 | ||
X14 | Tensore | galleggiante32 | ||
X15 | Tensore | galleggiante32 | ||
X16 | Tensore | galleggiante32 | ||
X17 | Tensore | galleggiante32 | ||
X18 | Tensore | galleggiante32 | ||
X19 | Tensore | galleggiante32 | ||
X2 | Tensore | galleggiante32 | ||
X20 | Tensore | galleggiante32 | ||
X3 | Tensore | galleggiante32 | ||
X4 | Tensore | galleggiante32 | ||
X5 | Tensore | galleggiante32 | ||
X6 | Tensore | galleggiante32 | ||
X7 | Tensore | galleggiante32 | ||
X8 | Tensore | galleggiante32 | ||
X9 | Tensore | galleggiante32 | ||
trattare | Tensore | int32 | ||
si | Tensore | int32 |
Chiavi supervisionate (vedi
as_supervised
doc ):({'X1': 'X1', 'X10': 'X10', 'X11': 'X11', 'X12': 'X12', 'X13': 'X13', 'X14': 'X14', 'X15': 'X15', 'X16': 'X16', 'X17': 'X17', 'X18': 'X18', 'X19': 'X19', 'X2': 'X2', 'X20': 'X20', 'X3': 'X3', 'X4': 'X4', 'X5': 'X5', 'X6': 'X6', 'X7': 'X7', 'X8': 'X8', 'X9': 'X9', 'treat': 'treat'}, 'y')
Figura ( tfds.show_examples ): non supportato.
Esempi ( tfds.as_dataframe ):
- Citazione :
@misc{https://doi.org/10.48550/arxiv.1212.2995,
doi = {10.48550/ARXIV.1212.2995},
url = {https://arxiv.org/abs/1212.2995},
author = {Tian, Lu and Alizadeh, Ash and Gentles, Andrew and Tibshirani, Robert},
keywords = {Methodology (stat.ME), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {A Simple Method for Detecting Interactions between a Treatment and a Large Number of Covariates},
publisher = {arXiv},
year = {2012},
copyright = {arXiv.org perpetual, non-exclusive license}
}