kolorektal_histologia

Klasyfikacja tekstur w histologii raka jelita grubego. Każdy przykład to obraz 150 x 150 x 3 RGB jednej z 8 klas.

Rozdzielać Przykłady
'train' 5000
  • Struktura funkcji :
FeaturesDict({
    'filename': Text(shape=(), dtype=string),
    'image': Image(shape=(150, 150, 3), dtype=uint8),
    'label': ClassLabel(shape=(), dtype=int64, num_classes=8),
})
  • Dokumentacja funkcji :
Funkcja Klasa Kształt Typ D Opis
FunkcjeDict
Nazwa pliku Tekst strunowy
obraz Obraz (150, 150, 3) uint8
etykieta Etykieta klasy int64

Wyobrażanie sobie

  • Cytat :
@article{kather2016multi,
  title={Multi-class texture analysis in colorectal cancer histology},
  author={Kather, Jakob Nikolas and Weis, Cleo-Aron and Bianconi, Francesco and Melchers, Susanne M and Schad, Lothar R and Gaiser, Timo and Marx, Alexander and Z{"o}llner, Frank Gerrit},
  journal={Scientific reports},
  volume={6},
  pages={27988},
  year={2016},
  publisher={Nature Publishing Group}
}