mq9
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
QM9 consiste nel calcolo delle proprietà geometriche, energetiche, elettroniche e termodinamiche per 134.000 piccole molecole organiche stabili costituite da C, H, O, N e F. Come al solito, rimuoviamo le molecole non caratterizzate e forniamo le restanti 130.831.
FeaturesDict({
'A': float32,
'B': float32,
'C': float32,
'Cv': float32,
'G': float32,
'G_atomization': float32,
'H': float32,
'H_atomization': float32,
'InChI': string,
'InChI_relaxed': string,
'Mulliken_charges': Tensor(shape=(29,), dtype=float32),
'SMILES': string,
'SMILES_relaxed': string,
'U': float32,
'U0': float32,
'U0_atomization': float32,
'U_atomization': float32,
'alpha': float32,
'charges': Tensor(shape=(29,), dtype=int64),
'frequencies': Tensor(shape=(None,), dtype=float32),
'gap': float32,
'homo': float32,
'index': int64,
'lumo': float32,
'mu': float32,
'num_atoms': int64,
'positions': Tensor(shape=(29, 3), dtype=float32),
'r2': float32,
'tag': string,
'zpve': float32,
})
- Documentazione delle funzionalità :
Caratteristica | Classe | Forma | Tipo D | Descrizione |
---|
| CaratteristicheDict | | | |
UN | Tensore | | float32 | |
B | Tensore | | float32 | |
C | Tensore | | float32 | |
Cv | Tensore | | float32 | |
G | Tensore | | float32 | |
G_atomizzazione | Tensore | | float32 | |
H | Tensore | | float32 | |
H_atomizzazione | Tensore | | float32 | |
InChI | Tensore | | corda | |
InChI_rilassato | Tensore | | corda | |
Mulliken_charges | Tensore | (29,) | float32 | |
SORRISI | Tensore | | corda | |
SORRISI_rilassato | Tensore | | corda | |
U | Tensore | | float32 | |
U0 | Tensore | | float32 | |
U0_atomizzazione | Tensore | | float32 | |
U_atomizzazione | Tensore | | float32 | |
alfa | Tensore | | float32 | |
spese | Tensore | (29,) | int64 | |
frequenze | Tensore | (Nessuno,) | float32 | |
spacco | Tensore | | float32 | |
omo | Tensore | | float32 | |
indice | Tensore | | int64 | |
lumo | Tensore | | float32 | |
mu | Tensore | | float32 | |
num_atomi | Tensore | | int64 | |
posizioni | Tensore | (29, 3) | float32 | |
r2 | Tensore | | float32 | |
etichetta | Tensore | | corda | |
zpve | Tensore | | float32 | |
@article{ramakrishnan2014quantum,
title={Quantum chemistry structures and properties of 134 kilo molecules},
author={Ramakrishnan, Raghunathan and Dral, Pavlo O and Rupp, Matthias and von Lilienfeld, O Anatole},
journal={Scientific Data},
volume={1},
year={2014},
publisher={Nature Publishing Group}
}
qm9/originale (configurazione predefinita)
Descrizione della configurazione : QM9 non definisce alcuna suddivisione. Quindi questa variante inserisce l'intero set di dati QM9 nella suddivisione del treno, nell'ordine originale (senza mescolamento).
Memorizzazione nella cache automatica ( documentazione ): solo quando shuffle_files=False
(train)
Divide :
Diviso | Esempi |
---|
'train' | 130.831 |
qm9/cormorano
Diviso | Esempi |
---|
'test' | 13.083 |
'train' | 100.000 |
'validation' | 17.748 |
qm9/dimenet
Diviso | Esempi |
---|
'test' | 10.831 |
'train' | 110.000 |
'validation' | 10.000 |
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2024-12-13 UTC.
[null,null,["Ultimo aggiornamento 2024-12-13 UTC."],[],[],null,["# qm9\n\n\u003cbr /\u003e\n\n- **Description**:\n\nQM9 consists of computed geometric, energetic, electronic, and thermodynamic\nproperties for 134k stable small organic molecules made up of C, H, O, N, and F.\nAs usual, we remove the uncharacterized molecules and provide the remaining\n130,831.\n\n- **Homepage** :\n \u003chttps://doi.org/10.6084/m9.figshare.c.978904.v5\u003e\n\n- **Source code** :\n [`tfds.datasets.qm9.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/qm9/qm9_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Download size** : `82.62 MiB`\n\n- **Dataset size** : `177.16 MiB`\n\n- **Feature structure**:\n\n FeaturesDict({\n 'A': float32,\n 'B': float32,\n 'C': float32,\n 'Cv': float32,\n 'G': float32,\n 'G_atomization': float32,\n 'H': float32,\n 'H_atomization': float32,\n 'InChI': string,\n 'InChI_relaxed': string,\n 'Mulliken_charges': Tensor(shape=(29,), dtype=float32),\n 'SMILES': string,\n 'SMILES_relaxed': string,\n 'U': float32,\n 'U0': float32,\n 'U0_atomization': float32,\n 'U_atomization': float32,\n 'alpha': float32,\n 'charges': Tensor(shape=(29,), dtype=int64),\n 'frequencies': Tensor(shape=(None,), dtype=float32),\n 'gap': float32,\n 'homo': float32,\n 'index': int64,\n 'lumo': float32,\n 'mu': float32,\n 'num_atoms': int64,\n 'positions': Tensor(shape=(29, 3), dtype=float32),\n 'r2': float32,\n 'tag': string,\n 'zpve': float32,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------|--------------|---------|---------|-------------|\n| | FeaturesDict | | | |\n| A | Tensor | | float32 | |\n| B | Tensor | | float32 | |\n| C | Tensor | | float32 | |\n| Cv | Tensor | | float32 | |\n| G | Tensor | | float32 | |\n| G_atomization | Tensor | | float32 | |\n| H | Tensor | | float32 | |\n| H_atomization | Tensor | | float32 | |\n| InChI | Tensor | | string | |\n| InChI_relaxed | Tensor | | string | |\n| Mulliken_charges | Tensor | (29,) | float32 | |\n| SMILES | Tensor | | string | |\n| SMILES_relaxed | Tensor | | string | |\n| U | Tensor | | float32 | |\n| U0 | Tensor | | float32 | |\n| U0_atomization | Tensor | | float32 | |\n| U_atomization | Tensor | | float32 | |\n| alpha | Tensor | | float32 | |\n| charges | Tensor | (29,) | int64 | |\n| frequencies | Tensor | (None,) | float32 | |\n| gap | Tensor | | float32 | |\n| homo | Tensor | | float32 | |\n| index | Tensor | | int64 | |\n| lumo | Tensor | | float32 | |\n| mu | Tensor | | float32 | |\n| num_atoms | Tensor | | int64 | |\n| positions | Tensor | (29, 3) | float32 | |\n| r2 | Tensor | | float32 | |\n| tag | Tensor | | string | |\n| zpve | Tensor | | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Citation**:\n\n @article{ramakrishnan2014quantum,\n title={Quantum chemistry structures and properties of 134 kilo molecules},\n author={Ramakrishnan, Raghunathan and Dral, Pavlo O and Rupp, Matthias and von Lilienfeld, O Anatole},\n journal={Scientific Data},\n volume={1},\n year={2014},\n publisher={Nature Publishing Group}\n }\n\nqm9/original (default config)\n-----------------------------\n\n- **Config description**: QM9 does not define any splits. So this variant puts\n the full QM9 dataset in the train split, in the original order (no\n shuffling).\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Only when `shuffle_files=False` (train)\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 130,831 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nqm9/cormorant\n-------------\n\n- **Config description** : Dataset split used by Cormorant. 100,000 train,\n 17,748 validation, and 13,083 test samples. Splitting happens after\n shuffling with seed 0. Paper: \u003chttps://arxiv.org/abs/1906.04015\u003e Split:\n \u003chttps://github.com/risilab/cormorant/blob/master/src/cormorant/data/prepare/qm9.py\u003e\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes (test, validation), Only when `shuffle_files=False` (train)\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 13,083 |\n| `'train'` | 100,000 |\n| `'validation'` | 17,748 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nqm9/dimenet\n-----------\n\n- **Config description** : Dataset split used by DimeNet. 110,000 train, 10,000\n validation, and 10,831 test samples. Splitting happens after shuffling with\n seed 42. Paper: \u003chttps://arxiv.org/abs/2003.03123\u003e Split:\n \u003chttps://github.com/gasteigerjo/dimenet/blob/master/dimenet/training/data_provider.py\u003e\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes (test, validation), Only when `shuffle_files=False` (train)\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 10,831 |\n| `'train'` | 110,000 |\n| `'validation'` | 10,000 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]