wsc273
با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
WSC273 یک معیار استدلال عقل سلیم است که سیستم را ملزم می کند جمله ای را با یک ضمیر مبهم بخواند و مرجع آن ضمیر را از بین دو گزینه انتخاب کند. این شامل 273 مثال اول از چالش طرحواره وینوگراد است. طرحواره وینوگراد یک جفت جمله است که فقط در یک یا دو کلمه متفاوت است و حاوی ابهامی است که در دو جمله به روش های متضاد حل می شود و برای حل آن نیاز به استفاده از دانش جهانی و استدلال دارد. این طرح نام خود را از مثال معروفی از تری وینوگراد گرفته است: The city councilmen refused the demonstrators a permit because they [feared/advocated] violence.'' If the word is
they'' presumably refers to the city council; if it is
حمایت شود، احتمالاً «آنها» به تظاهرکنندگان اشاره دارد.
FeaturesDict({
'idx': int32,
'label': int32,
'option1': Text(shape=(), dtype=string),
'option1_normalized': Text(shape=(), dtype=string),
'option2': Text(shape=(), dtype=string),
'option2_normalized': Text(shape=(), dtype=string),
'pronoun_end': int32,
'pronoun_start': int32,
'pronoun_text': Text(shape=(), dtype=string),
'text': Text(shape=(), dtype=string),
})
ویژگی | کلاس | شکل | نوع D | شرح |
---|
| FeaturesDict | | | |
idx | تانسور | | int32 | |
برچسب | تانسور | | int32 | |
انتخاب 1 | متن | | رشته | |
option1_normalized | متن | | رشته | |
گزینه 2 | متن | | رشته | |
option2_normalized | متن | | رشته | |
ضمیر_پایان | تانسور | | int32 | |
ضمیر_شروع | تانسور | | int32 | |
ضمیر_متن | متن | | رشته | |
متن | متن | | رشته | |
@inproceedings{levesque2012winograd,
title={The winograd schema challenge},
author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
year={2012},
organization={Citeseer}
}
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2022-12-06 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2022-12-06 بهوقت ساعت هماهنگ جهانی."],[],[],null,["# wsc273\n\n\u003cbr /\u003e\n\n- **Description**:\n\nWSC273 is a common sense reasoning benchmark that requires the system to read a\nsentence with an ambiguous pronoun and select the referent of that pronoun from\ntwo choices. It contains the first 273 examples from the Winograd Schema\nChallenge. A Winograd schema is a pair of sentences that differ in only one or\ntwo words and that contain an ambiguity that is resolved in opposite ways in the\ntwo sentences and requires the use of world knowledge and reasoning for its\nresolution. The schema takes its name from a well-known example by Terry\nWinograd: `The city councilmen refused the demonstrators a permit because they\n[feared/advocated] violence.'' If the word is`feared'', then `they'' presumably\nrefers to the city council; if it is`advocated'' then \\`\\`they'' presumably refers\nto the demonstrators.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/wsc)\n\n- **Homepage** :\n \u003chttps://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html\u003e\n\n- **Source code** :\n [`tfds.text.wsc273.Wsc273`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/wsc273/wsc273.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `110.58 KiB`\n\n- **Dataset size** : `87.15 KiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------|----------|\n| `'test'` | 273 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'idx': int32,\n 'label': int32,\n 'option1': Text(shape=(), dtype=string),\n 'option1_normalized': Text(shape=(), dtype=string),\n 'option2': Text(shape=(), dtype=string),\n 'option2_normalized': Text(shape=(), dtype=string),\n 'pronoun_end': int32,\n 'pronoun_start': int32,\n 'pronoun_text': Text(shape=(), dtype=string),\n 'text': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| idx | Tensor | | int32 | |\n| label | Tensor | | int32 | |\n| option1 | Text | | string | |\n| option1_normalized | Text | | string | |\n| option2 | Text | | string | |\n| option2_normalized | Text | | string | |\n| pronoun_end | Tensor | | int32 | |\n| pronoun_start | Tensor | | int32 | |\n| pronoun_text | Text | | string | |\n| text | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{levesque2012winograd,\n title={The winograd schema challenge},\n author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},\n booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},\n year={2012},\n organization={Citeseer}\n }"]]