wiki_dpr

مراجع:

psgs_w100.nq.exact

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:wiki_dpr/psgs_w100.nq.exact')
  • توضیحات :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 0.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'train' 21015300
  • ویژگی ها :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "embeddings": {
        "feature": {
            "dtype": "float32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

psgs_w100.nq.compressed

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:wiki_dpr/psgs_w100.nq.compressed')
  • توضیحات :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 0.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'train' 21015300
  • ویژگی ها :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "embeddings": {
        "feature": {
            "dtype": "float32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

psgs_w100.nq.no_index

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:wiki_dpr/psgs_w100.nq.no_index')
  • توضیحات :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 0.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'train' 21015300
  • ویژگی ها :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "embeddings": {
        "feature": {
            "dtype": "float32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

psgs_w100.multiset.exact

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:wiki_dpr/psgs_w100.multiset.exact')
  • توضیحات :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 0.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'train' 21015300
  • ویژگی ها :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "embeddings": {
        "feature": {
            "dtype": "float32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

psgs_w100.multiset.compressed

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:wiki_dpr/psgs_w100.multiset.compressed')
  • توضیحات :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 0.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'train' 21015300
  • ویژگی ها :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "embeddings": {
        "feature": {
            "dtype": "float32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

psgs_w100.multiset.no_index

برای بارگذاری این مجموعه داده در TFDS از دستور زیر استفاده کنید:

ds = tfds.load('huggingface:wiki_dpr/psgs_w100.multiset.no_index')
  • توضیحات :
This is the wikipedia split used to evaluate the Dense Passage Retrieval (DPR) model.
It contains 21M passages from wikipedia along with their DPR embeddings.
The wikipedia articles were split into multiple, disjoint text blocks of 100 words as passages.
  • مجوز : مجوز شناخته شده ای وجود ندارد
  • نسخه : 0.0.0
  • تقسیم ها :
تقسیم کنید نمونه ها
'train' 21015300
  • ویژگی ها :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "embeddings": {
        "feature": {
            "dtype": "float32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}