austin_sailor_dataset_convertido_externalmente_a_rlds

  • Descripción :

Tareas de preparación de la mesa de Franka

Dividir Ejemplos
'train' 240
  • Estructura de características :
FeaturesDict({
   
'episode_metadata': FeaturesDict({
       
'file_path': Text(shape=(), dtype=string),
   
}),
   
'steps': Dataset({
       
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x ee relative pos, 3x ee relative rotation, 1x gripper action].),
       
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
       
'is_first': bool,
       
'is_last': bool,
       
'is_terminal': bool,
       
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
       
'language_instruction': Text(shape=(), dtype=string),
       
'observation': FeaturesDict({
           
'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
           
'state': Tensor(shape=(8,), dtype=float32, description=Default robot state, consists of [3x robot ee pos, 3x ee quat, 1x gripper state].),
           
'state_ee': Tensor(shape=(16,), dtype=float32, description=End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose.),
           
'state_gripper': Tensor(shape=(1,), dtype=float32, description=Robot gripper opening width. Ranges between ~0 (closed) to ~0.077 (open)),
           
'state_joint': Tensor(shape=(7,), dtype=float32, description=Robot 7-dof joint information (not used in original SAILOR dataset).),
           
'wrist_image': Image(shape=(128, 128, 3), dtype=uint8, description=Wrist camera RGB observation.),
       
}),
       
'reward': Scalar(shape=(), dtype=float32, description=True on last step of the episode.),
   
}),
})
  • Documentación de funciones :
Característica Clase Forma tipo D Descripción
FuncionesDict
episodio_metadatos FuncionesDict
metadatos_episodio/ruta_archivo Texto cadena Ruta al archivo de datos original.
pasos Conjunto de datos
pasos/acción Tensor (7,) flotador32 La acción del robot consta de [3x ee posición relativa, 3x ee rotación relativa, 1x acción de pinza].
pasos/descuento Escalar flotador32 Descuento si se proporciona, el valor predeterminado es 1.
pasos/es_primero Tensor booleano
pasos/es_último Tensor booleano
pasos/es_terminal Tensor booleano
pasos/idioma_incrustación Tensor (512,) flotador32 Incorporación del lenguaje Kona. Consulte https://tfhub.dev/google/universal-sentence-encoder-large/5
pasos/instrucción_idioma Texto cadena Instrucción de idiomas.
pasos/observación FuncionesDict
pasos/observación/imagen Imagen (128, 128, 3) uint8 Observación RGB de la cámara principal.
pasos/observación/estado Tensor (8,) flotador32 El estado predeterminado del robot consta de [3x robot ee pos, 3x ee quat, 1x estado de pinza].
pasos/observación/estado_ee Tensor (16,) flotador32 Estado efector final, representado como una matriz de transformación homogénea de 4x4 de pose ee.
pasos/observación/state_gripper Tensor (1,) flotador32 Ancho de apertura de la pinza del robot. Varía entre ~0 (cerrado) y ~0,077 (abierto)
pasos/observación/state_joint Tensor (7,) flotador32 Información conjunta del robot de 7 grados de libertad (no utilizada en el conjunto de datos original de SAILOR).
pasos/observación/imagen_muñeca Imagen (128, 128, 3) uint8 Cámara de muñeca de observación RGB.
pasos/recompensa Escalar flotador32 Cierto en el último paso del episodio.
  • Cita :
@inproceedings{nasiriany2022sailor,
      title
={Learning and Retrieval from Prior Data for Skill-based Imitation Learning},
      author
={Soroush Nasiriany and Tian Gao and Ajay Mandlekar and Yuke Zhu},
      booktitle
={Conference on Robot Learning (CoRL)},
      year
={2022}
   
}