utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds
Organízate con las colecciones
Guarda y clasifica el contenido según tus preferencias.
Manipulación de mesa PR2 (doblar tela, recoger)
Dividir | Ejemplos |
---|
'train' | 192 |
'val' | 48 |
- Estructura de características :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end effector pos, 3x robot rpy angles, 1x gripper open/close command, 1x terminal action].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [3x end effector pos, 3x robot rpy angles, 1x gripper position].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Documentación de funciones :
Característica | Clase | Forma | tipo D | Descripción |
---|
| FuncionesDict | | | |
episodio_metadatos | FuncionesDict | | | |
metadatos_episodio/ruta_archivo | Texto | | cadena | Ruta al archivo de datos original. |
pasos | Conjunto de datos | | | |
pasos/acción | Tensor | (8,) | flotador32 | La acción del robot consta de [3x posición del efector final, 3x ángulos de rotación del robot, 1x comando de apertura/cierre de la pinza, 1x acción terminal]. |
pasos/descuento | Escalar | | flotador32 | Descuento si se proporciona, el valor predeterminado es 1. |
pasos/es_primero | Tensor | | booleano | |
pasos/es_último | Tensor | | booleano | |
pasos/es_terminal | Tensor | | booleano | |
pasos/idioma_incrustación | Tensor | (512,) | flotador32 | Incorporación del lenguaje Kona. Consulte https://tfhub.dev/google/universal-sentence-encoder-large/5 |
pasos/instrucción_idioma | Texto | | cadena | Instrucción de idiomas. |
pasos/observación | FuncionesDict | | | |
pasos/observación/imagen | Imagen | (128, 128, 3) | uint8 | Observación RGB de la cámara principal. |
pasos/observación/estado | Tensor | (7,) | flotador32 | El estado del robot consta de [3x posición del efector final, 3x ángulos de rotación del robot, 1x posición de la pinza]. |
pasos/recompensa | Escalar | | flotador32 | Recompensa si se proporciona, 1 en el paso final para demostraciones. |
@misc{oh2023pr2utokyodatasets,
author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},
title={X-Embodiment U-Tokyo PR2 Datasets},
year={2023},
url={https://github.com/ojh6404/rlds_dataset_builder},
}
A menos que se indique lo contrario, el contenido de esta página está sujeto a la licencia Reconocimiento 4.0 de Creative Commons y las muestras de código están sujetas a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio web de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2024-12-18 (UTC).
[null,null,["Última actualización: 2024-12-18 (UTC)."],[],[],null,["# utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds\n\n\u003cbr /\u003e\n\n- **Description**:\n\nPR2 tabletop manipulation (folding cloth, picking)\n\n- **Homepage** : [--](/datasets/catalog/--)\n\n- **Source code** :\n [`tfds.robotics.rtx.UtokyoPr2TabletopManipulationConvertedExternallyToRlds`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `829.37 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 192 |\n| `'val'` | 48 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end effector pos, 3x robot rpy angles, 1x gripper open/close command, 1x terminal action].),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),\n 'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [3x end effector pos, 3x robot rpy angles, 1x gripper position].),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------------------|--------------|---------------|---------|----------------------------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (8,) | float32 | Robot action, consists of \\[3x end effector pos, 3x robot rpy angles, 1x gripper open/close command, 1x terminal action\\]. |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Language Instruction. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (128, 128, 3) | uint8 | Main camera RGB observation. |\n| steps/observation/state | Tensor | (7,) | float32 | Robot state, consists of \\[3x end effector pos, 3x robot rpy angles, 1x gripper position\\]. |\n| steps/reward | Scalar | | float32 | Reward if provided, 1 on final step for demos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @misc{oh2023pr2utokyodatasets,\n author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},\n title={X-Embodiment U-Tokyo PR2 Datasets},\n year={2023},\n url={https://github.com/ojh6404/rlds_dataset_builder},\n }"]]