Generates conv and fc layers to encode into a hidden state.
tf_agents.networks.utils.mlp_layers(
conv_layer_params=None,
fc_layer_params=None,
dropout_layer_params=None,
activation_fn=tf.keras.activations.relu,
kernel_initializer=None,
weight_decay_params=None,
name=None
)
Args |
conv_layer_params
|
Optional list of convolution layers parameters, where
each item is a length-three tuple indicating (filters, kernel_size,
stride).
|
fc_layer_params
|
Optional list of fully_connected parameters, where each
item is the number of units in the layer.
|
dropout_layer_params
|
Optional list of dropout layer parameters, each item
is the fraction of input units to drop or a dictionary of parameters
according to the keras.Dropout documentation. The additional parameter
permanent , if set to True, allows to apply dropout at inference for
approximated Bayesian inference. The dropout layers are interleaved with
the fully connected layers; there is a dropout layer after each fully
connected layer, except if the entry in the list is None. This list must
have the same length of fc_layer_params, or be None.
|
activation_fn
|
Activation function, e.g. tf.keras.activations.relu,.
|
kernel_initializer
|
Initializer to use for the kernels of the conv and dense
layers. If none is provided a default variance_scaling_initializer is
used.
|
weight_decay_params
|
Optional list of weight decay params for the fully
connected layer.
|
name
|
Name for the mlp layers.
|
Returns |
List of mlp layers.
|
Raises |
ValueError
|
If the number of dropout layer parameters does not match the
number of fully connected layer parameters.
|