tf_agents.trajectories.trajectory.from_episode
Create a Trajectory from tensors representing a single episode.
tf_agents.trajectories.trajectory.from_episode(
observation: tf_agents.typing.types.NestedSpecTensorOrArray
,
action: tf_agents.typing.types.NestedSpecTensorOrArray
,
policy_info: tf_agents.typing.types.NestedSpecTensorOrArray
,
reward: tf_agents.typing.types.NestedSpecTensorOrArray
,
discount: Optional[types.SpecTensorOrArray] = None
) -> tf_agents.trajectories.Trajectory
If none of the inputs are tensors, then numpy arrays are generated instead.
If discount
is not provided, the first entry in reward
is used to estimate
T
:
reward_0 = tf.nest.flatten(reward)[0]
T = shape(reward_0)[0]
In this case, a discount
of all ones having dtype float32
is generated.
Args |
observation
|
(possibly nested tuple of) Tensor or np.ndarray ; all shaped
[T, ...] .
|
action
|
(possibly nested tuple of) Tensor or np.ndarray ; all shaped [T,
...] .
|
policy_info
|
(possibly nested tuple of) Tensor or np.ndarray ; all shaped
[T, ...] .
|
reward
|
(possibly nested tuple of) Tensor or np.ndarray ; all shaped [T,
...] .
|
discount
|
A floating point vector Tensor or np.ndarray ; shaped [T]
(optional).
|
Returns |
An instance of Trajectory .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[]]