|  View source on GitHub | 
TensorNormalizer with exponential moving avg. mean and var estimates.
Inherits From: TensorNormalizer
tf_agents.utils.tensor_normalizer.EMATensorNormalizer(
    tensor_spec, scope='normalize_tensor', norm_update_rate=0.001
)
| Args | |
|---|---|
| tensor_spec | The specs of the tensors to normalize. | 
| scope | Scope for the tf.Module. | 
Methods
map_dtype
map_dtype(
    dtype
)
normalize
normalize(
    tensor, clip_value=5.0, center_mean=True, variance_epsilon=0.001
)
Applies normalization to tensor.
| Args | |
|---|---|
| tensor | Tensor to normalize. | 
| clip_value | Clips normalized observations between +/- this value if clip_value > 0, otherwise does not apply clipping. | 
| center_mean | If true, subtracts off mean from normalized tensor. | 
| variance_epsilon | Epsilon to avoid division by zero in normalization. | 
| Returns | |
|---|---|
| normalized_tensor | Tensor after applying normalization. | 
update
update(
    tensor, outer_dims=(0,)
)
Updates tensor normalizer variables.