tf_agents.distributions.utils.merge_to_parameters_from_dict
Merges dict matching data of parameters_to_dict(value)
to a new Params
.
tf_agents.distributions.utils.merge_to_parameters_from_dict(
value: tf_agents.distributions.utils.Params
,
params_dict: Mapping[Text, Any]
) -> tf_agents.distributions.utils.Params
For more details, see the example below and the documentation of
parameters_to_dict
.
Example:
scale_matrix = tf.Variable([[1.0, 2.0], [-1.0, 0.0]])
d = tfp.distributions.MultivariateNormalDiag(
loc=[1.0, 1.0], scale_diag=[2.0, 3.0], validate_args=True)
b = tfp.bijectors.ScaleMatvecLinearOperator(
scale=tf.linalg.LinearOperatorFullMatrix(matrix=scale_matrix),
adjoint=True)
b_d = b(d)
p = utils.get_parameters(b_d)
params_dict = utils.parameters_to_dict(p)
params_dict["bijector"]["scale"]["matrix"] = new_scale_matrix
new_params = utils.merge_to_parameters_from_dict(
p, params_dict)
# new_d is a `ScaleMatvecLinearOperator()(MultivariateNormalDiag)` with
# a new scale matrix.
new_d = utils.make_from_parameters(new_params)
Args |
value
|
A Params from which params_dict was derived.
|
params_dict
|
A nested dict created by e.g. calling
parameters_to_dict(value) and modifying it to modify parameters.
NOTE If any keys in the dict are missing, the "default" value in
value is used instead.
|
Returns |
A new Params object which can then be turned into e.g. a
tfp.Distribution via make_from_parameters .
|
Raises |
ValueError
|
If params_dict has keys missing from value.params .
|
KeyError
|
If a subdict entry is missing for a nested value in
value.params .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[]]