nyu_rot_dataset_converted_externally_to_rlds

  • Tanım :

xArm kısa ufuklu masa üstü görevler

Bölmek Örnekler
'train' 14
  • Özellik yapısı :
FeaturesDict({
   
'episode_metadata': FeaturesDict({
       
'file_path': Text(shape=(), dtype=string),
   
}),
   
'steps': Dataset({
       
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x robot end effector delta positions, 3x robot end effector rotations (roll, pitch, yaw),1x gripper open/close (0-open, 1-closed)].),
       
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
       
'is_first': bool,
       
'is_last': bool,
       
'is_terminal': bool,
       
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
       
'language_instruction': Text(shape=(), dtype=string),
       
'observation': FeaturesDict({
           
'image': Image(shape=(84, 84, 3), dtype=uint8, description=Main camera RGB observation.),
           
'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [3x robot end effector positions, 3x robot end effector rotations (roll, pitch, yaw),1x gripper open/close (0-open, 1-closed)].),
       
}),
       
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
   
}),
})
  • Özellik belgeleri :
Özellik Sınıf Şekil Dtipi Tanım
ÖzelliklerDict
bölüm_meta verileri ÖzelliklerDict
bölüm_metadata/dosya_yolu Metin sicim Orijinal veri dosyasının yolu.
adımlar Veri kümesi
adımlar/eylem Tensör (7,) kayan nokta32 Robot hareketi, [3x robot uç efektör delta konumu, 3x robot uç efektör dönüşü (yuvarlanma, eğim, sapma), 1x tutucu açma/kapama (0-açık, 1-kapalı)]'dan oluşur.
adımlar/indirim Skaler kayan nokta32 Sağlanırsa indirim, varsayılan olarak 1'dir.
adımlar/is_first Tensör bool
adımlar/is_last Tensör bool
adımlar/is_terminal Tensör bool
adımlar/dil_embedding Tensör (512,) kayan nokta32 Kona dili yerleştirme. Bkz. https://tfhub.dev/google/universal-sentence-encoder-large/5
adımlar/language_instruction Metin sicim Dil Öğretimi.
adımlar/gözlem ÖzelliklerDict
adımlar/gözlem/görüntü Resim (84, 84, 3) uint8 Ana kamera RGB gözlemi.
adımlar/gözlem/durum Tensör (7,) kayan nokta32 Robot durumu, [3x robot uç efektör konumu, 3x robot uç efektör dönüşü (yuvarlanma, eğim, sapma), 1x tutucu açık/kapalı (0-açık, 1-kapalı)]'dan oluşur.
adımlar/ödül Skaler kayan nokta32 Sağlandığı takdirde ödül, demolar için son adımda 1.
  • Alıntı :
@inproceedings{haldar2023watch,
  title
={Watch and match: Supercharging imitation with regularized optimal transport},
  author
={Haldar, Siddhant and Mathur, Vaibhav and Yarats, Denis and Pinto, Lerrel},
  booktitle
={Conference on Robot Learning},
  pages
={32--43},
  year
={2023},
  organization
={PMLR}
}