tensorflow::ops::SparseSoftmax
#include <sparse_ops.h>
Applies softmax to a batched N-D SparseTensor
.
Summary
The inputs represent an N-D SparseTensor with logical shape [..., B, C]
(where N >= 2
), and with indices sorted in the canonical lexicographic order.
This op is equivalent to applying the normal tf.nn.softmax()
to each innermost logical submatrix with shape [B, C]
, but with the catch that the implicitly zero elements do not participate. Specifically, the algorithm is equivalent to the following:
(1) Applies tf.nn.softmax()
to a densified view of each innermost submatrix with shape [B, C]
, along the size-C dimension; (2) Masks out the original implicitly-zero locations; (3) Renormalizes the remaining elements.
Hence, the SparseTensor
result has exactly the same non-zero indices and shape.
Arguments:
- scope: A Scope object
- sp_indices: 2-D.
NNZ x R
matrix with the indices of non-empty values in a SparseTensor, in canonical ordering. - sp_values: 1-D.
NNZ
non-empty values corresponding tosp_indices
. - sp_shape: 1-D. Shape of the input SparseTensor.
Returns:
Output
: 1-D. TheNNZ
values for the resultSparseTensor
.
Constructors and Destructors |
|
---|---|
SparseSoftmax(const ::
|
Public functions |
|
---|---|
node() const
|
::tensorflow::Node *
|
operator::
|
|
operator::
|
|
Public attributes
operation
Operation operation
output
::tensorflow::Output output
Public functions
SparseSoftmax
SparseSoftmax( const ::tensorflow::Scope & scope, ::tensorflow::Input sp_indices, ::tensorflow::Input sp_values, ::tensorflow::Input sp_shape )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const