Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
тензорный поток:: опс:: Разреженный переупорядочение
#include <sparse_ops.h>
Изменяет порядок SparseTensor в канонический порядок по строкам.
Краткое содержание
Обратите внимание, что по соглашению все разреженные операции сохраняют канонический порядок по возрастанию размерности. Единственный случай, когда порядок может быть нарушен, — это ручное манипулирование векторами индексов и значений для добавления записей.
Изменение порядка не влияет на форму SparseTensor.
Если тензор имеет ранг R
и N
непустых значений, input_indices
имеет форму [N, R]
, input_values имеет длину N
и input_shape имеет длину R
.
Аргументы:
- область: объект области.
- input_indices: 2-D. Матрица
N x R
с индексами непустых значений в SparseTensor, возможно, не в каноническом порядке. - входные_значения: 1-D.
N
непустых значений, соответствующих input_indices
. - входная_форма: 1-D. Форма входного SparseTensor.
Возврат:
-
Output
выходные_индексы: 2-D. Матрица N x R
с теми же индексами, что и input_indices, но в каноническом порядке по строкам. -
Output
выходные_значения: 1-D. N
непустых значений, соответствующих output_indices
.
Публичные атрибуты
Общественные функции
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-26 UTC.
[null,null,["Последнее обновление: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::SparseReorder Class Reference\n\ntensorflow::ops::SparseReorder\n==============================\n\n`#include \u003csparse_ops.h\u003e`\n\nReorders a SparseTensor into the canonical, row-major ordering.\n\nSummary\n-------\n\nNote that by convention, all sparse ops preserve the canonical ordering along increasing dimension number. The only time ordering can be violated is during manual manipulation of the indices and values vectors to add entries.\n\nReordering does not affect the shape of the SparseTensor.\n\nIf the tensor has rank `R` and `N` non-empty values, `input_indices` has shape `[N, R]`, input_values has length `N`, and input_shape has length `R`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering.\n- input_values: 1-D. `N` non-empty values corresponding to `input_indices`.\n- input_shape: 1-D. Shape of the input SparseTensor.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_indices: 2-D. `N x R` matrix with the same indices as input_indices, but in canonical row-major ordering.\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_values: 1-D. `N` non-empty values corresponding to `output_indices`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseReorder](#classtensorflow_1_1ops_1_1_sparse_reorder_1aafcce71e6de3ad9b8ce9618fe3b636a0)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_values, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_shape)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_reorder_1adbdca22d516880fc4093b79caf22bad3) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_reorder_1af583efc1f49452eefa81d966158fd3b6) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_reorder_1ad573d2b883ff9fa37df6b1ae4bc4ec18) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::Output output_indices\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::Output output_values\n``` \n\nPublic functions\n----------------\n\n### SparseReorder\n\n```gdscript\n SparseReorder(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_indices,\n ::tensorflow::Input input_values,\n ::tensorflow::Input input_shape\n)\n```"]]