tensorflow::
ops::
SparseApplyFtrl
#include <training_ops.h>
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
Summary
That is for rows we have grad for, we update var, accum and linear as follows:
Args:
- scope: A Scope object
- var: Should be from a Variable().
- accum: Should be from a Variable().
- linear: Should be from a Variable().
- grad: The gradient.
- indices: A vector of indices into the first dimension of var and accum.
- lr: Scaling factor. Must be a scalar.
- l1: L1 regularization. Must be a scalar.
- l2: L2 regularization. Must be a scalar.
- lr_power: Scaling factor. Must be a scalar.
Optional attributes (see
Attrs
):
-
use_locking: If
True
, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
-
Output
: Same as "var".
Constructors and Destructors |
|
---|---|
SparseApplyFtrl
(const ::
tensorflow::Scope
& scope, ::
tensorflow::Input
var, ::
tensorflow::Input
accum, ::
tensorflow::Input
linear, ::
tensorflow::Input
grad, ::
tensorflow::Input
indices, ::
tensorflow::Input
lr, ::
tensorflow::Input
l1, ::
tensorflow::Input
l2, ::
tensorflow::Input
lr_power)
|
|
SparseApplyFtrl
(const ::
tensorflow::Scope
& scope, ::
tensorflow::Input
var, ::
tensorflow::Input
accum, ::
tensorflow::Input
linear, ::
tensorflow::Input
grad, ::
tensorflow::Input
indices, ::
tensorflow::Input
lr, ::
tensorflow::Input
l1, ::
tensorflow::Input
l2, ::
tensorflow::Input
lr_power, const
SparseApplyFtrl::Attrs
& attrs)
|
Public functions |
|
---|---|
node
() const
|
::tensorflow::Node *
|
operator::tensorflow::Input
() const
|
|
operator::tensorflow::Output
() const
|
|
Public static functions |
|
---|---|
MultiplyLinearByLr
(bool x)
|
|
UseLocking
(bool x)
|
Structs |
|
---|---|
tensorflow::
|
Optional attribute setters for SparseApplyFtrl . |
Public attributes
Public functions
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power )
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const