Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
#include <nn_ops.h>
Menghitung gradien dilatasi 2-D morfologi terhadap masukan.
Ringkasan
Argumen:
- ruang lingkup: Objek Lingkup
- masukan: 4-D dengan bentuk
[batch, in_height, in_width, depth]
. - filter: 3-D dengan bentuk
[filter_height, filter_width, depth]
. - out_backprop: 4-D dengan bentuk
[batch, out_height, out_width, depth]
. - langkah: panjang 1-D 4. Langkah jendela geser untuk setiap dimensi tensor masukan. Harus:
[1, stride_height, stride_width, 1]
. - tarif: panjang 1-D 4. Langkah masukan untuk dilatasi morfologi atrous. Harus:
[1, rate_height, rate_width, 1]
. - padding: Jenis algoritma padding yang akan digunakan.
Pengembalian:
-
Output
: 4-D dengan bentuk [batch, in_height, in_width, depth]
.
Atribut publik
Fungsi publik
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Dilation2DBackpropInput Class Reference\n\ntensorflow::ops::Dilation2DBackpropInput\n========================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the gradient of morphological 2-D dilation with respect to the input.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D with shape `[batch, in_height, in_width, depth]`.\n- filter: 3-D with shape `[filter_height, filter_width, depth]`.\n- out_backprop: 4-D with shape `[batch, out_height, out_width, depth]`.\n- strides: 1-D of length 4. The stride of the sliding window for each dimension of the input tensor. Must be: `[1, stride_height, stride_width, 1]`.\n- rates: 1-D of length 4. The input stride for atrous morphological dilation. Must be: `[1, rate_height, rate_width, 1]`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape `[batch, in_height, in_width, depth]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Dilation2DBackpropInput](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1a656665a13419870e177ca6b67a869f31)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, const gtl::ArraySlice\u003c int \u003e & rates, StringPiece padding)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [in_backprop](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1a40353e552051aa8801ef9f9ad4efc15c) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1a02412d298e84e41cd1bd2a21b9a064f4) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1ab58e7a7ffead7f2dd0dcc062204f47f8)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1a4ad020555d5b8ffc10bdf49956232358)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_dilation2_d_backprop_input_1a8029c3562d2413ed5a8b249933690e32)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### in_backprop\n\n```scdoc\n::tensorflow::Output in_backprop\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### Dilation2DBackpropInput\n\n```gdscript\n Dilation2DBackpropInput(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n const gtl::ArraySlice\u003c int \u003e & rates,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]