Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: MatrixBandBagian
#include <array_ops.h>
Salin pengaturan tensor segala sesuatu di luar pita pusat di setiap matriks terdalam.
Ringkasan
ke nol.
Bagian band
dihitung sebagai berikut: Asumsikan input
mempunyai k
dimensi [I, J, K, ..., M, N]
, maka keluarannya berupa tensor dengan bentuk yang sama dimana
band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n]
.
Fungsi indikator
in_band(m, n) = (num_lower < 0 || (mn) <= num_lower)) && (num_upper < 0 || (nm) <= num_upper)
.
Misalnya:
# if 'input' is [[ 0, 1, 2, 3]
[-1, 0, 1, 2]
[-2, -1, 0, 1]
[-3, -2, -1, 0]],
tf.matrix_band_part(input, 1, -1) ==> [[ 0, 1, 2, 3]
[-1, 0, 1, 2]
[ 0, -1, 0, 1]
[ 0, 0, -1, 0]],
tf.matrix_band_part(input, 2, 1) ==> [[ 0, 1, 0, 0]
[-1, 0, 1, 0]
[-2, -1, 0, 1]
[ 0, -2, -1, 0]]
Kasus khusus yang berguna:
tf.matrix_band_part(input, 0, -1) ==> Upper triangular part.
tf.matrix_band_part(input, -1, 0) ==> Lower triangular part.
tf.matrix_band_part(input, 0, 0) ==> Diagonal.
Argumen:
- ruang lingkup: Objek Lingkup
- masukan: Tensor peringkat
k
. - num_lower: tensor 0-D. Jumlah subdiagonal yang harus dipertahankan. Jika negatif, pertahankan seluruh segitiga bawah.
- num_upper: tensor 0-D. Jumlah superdiagonal yang harus dipertahankan. Jika negatif, pertahankan seluruh segitiga atas.
Pengembalian:
-
Output
: Peringkat k
tensor dengan bentuk yang sama dengan masukan. Tensor berpita yang diekstraksi.
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::MatrixBandPart Class Reference\n\ntensorflow::ops::MatrixBandPart\n===============================\n\n`#include \u003carray_ops.h\u003e`\n\nCopy a tensor setting everything outside a central band in each innermost matrix.\n\nSummary\n-------\n\nto zero.\n\nThe `band` part is computed as follows: Assume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a tensor with the same shape where\n\n`band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n]`.\n\nThe indicator function\n\n`in_band(m, n) = (num_lower \u003c 0 || (m-n) \u003c= num_lower)) && (num_upper \u003c 0 || (n-m) \u003c= num_upper)`.\n\nFor example:\n\n\n```text\n# if 'input' is [[ 0, 1, 2, 3]\n [-1, 0, 1, 2]\n [-2, -1, 0, 1]\n [-3, -2, -1, 0]],\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.matrix_band_part(input, 1, -1) ==\u003e [[ 0, 1, 2, 3]\n [-1, 0, 1, 2]\n [ 0, -1, 0, 1]\n [ 0, 0, -1, 0]],\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.matrix_band_part(input, 2, 1) ==\u003e [[ 0, 1, 0, 0]\n [-1, 0, 1, 0]\n [-2, -1, 0, 1]\n [ 0, -2, -1, 0]]\n```\n\n\u003cbr /\u003e\n\nUseful special cases:\n\n\n```scdoc\n tf.matrix_band_part(input, 0, -1) ==\u003e Upper triangular part.\n tf.matrix_band_part(input, -1, 0) ==\u003e Lower triangular part.\n tf.matrix_band_part(input, 0, 0) ==\u003e Diagonal.\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank `k` tensor.\n- num_lower: 0-D tensor. Number of subdiagonals to keep. If negative, keep entire lower triangle.\n- num_upper: 0-D tensor. Number of superdiagonals to keep. If negative, keep entire upper triangle.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Rank `k` tensor of the same shape as input. The extracted banded tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixBandPart](#classtensorflow_1_1ops_1_1_matrix_band_part_1aafbd4f5790f99aabe649a2603fab5026)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` num_lower, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` num_upper)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [band](#classtensorflow_1_1ops_1_1_matrix_band_part_1a19ddd7640d84cfeb55298dcd2d150a8c) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_matrix_band_part_1a7f11fcb9cf1a97f13cded627a9579305) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_band_part_1a7a9ecf47b2def85ed1a8e7ab08dfe008)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_band_part_1a1b6a750bbd105a89c4ef9a398ccf7cf1)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_band_part_1a2be19e72aeddcea40f0be7cc6d6fdf97)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### band\n\n```text\n::tensorflow::Output band\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### MatrixBandPart\n\n```gdscript\n MatrixBandPart(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input num_lower,\n ::tensorflow::Input num_upper\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]