Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: QuantizedBatchNormDenganNormalisasi Global
#include <nn_ops.h>
Normalisasi Batch terkuantisasi.
Ringkasan
Operasi ini tidak digunakan lagi dan akan dihapus di masa mendatang. Lebih suka tf.nn.batch_normalization
.
Argumen:
- ruang lingkup: Objek Lingkup
- t: Tensor masukan 4D .
- t_min: Nilai yang diwakili oleh input terkuantisasi terendah.
- t_max: Nilai yang diwakili oleh input terkuantisasi tertinggi.
- m: Tensor rata-rata 1D dengan ukuran yang cocok dengan dimensi terakhir t. Ini adalah keluaran pertama dari tf.nn.moments, atau rata-rata pergerakan yang disimpan darinya.
- m_min: Nilai yang diwakili oleh mean terkuantisasi terendah.
- m_max: Nilai yang diwakili oleh mean terkuantisasi tertinggi.
- v: Tensor varians 1D dengan ukuran yang cocok dengan dimensi terakhir t. Ini adalah keluaran kedua dari tf.nn.moments, atau rata-rata pergerakan yang disimpan darinya.
- v_min: Nilai yang diwakili oleh varian terkuantisasi terendah.
- v_max: Nilai yang diwakili oleh varian terkuantisasi tertinggi.
- beta: Tensor beta 1D dengan ukuran yang cocok dengan dimensi terakhir t. Offset yang akan ditambahkan ke tensor yang dinormalisasi.
- beta_min: Nilai yang diwakili oleh offset terkuantisasi terendah.
- beta_max: Nilai yang diwakili oleh offset terkuantisasi tertinggi.
- gamma: Tensor gamma 1D dengan ukuran yang cocok dengan dimensi terakhir t. Jika "scale_after_normalization" benar, tensor ini akan dikalikan dengan tensor yang dinormalisasi.
- gamma_min: Nilai yang diwakili oleh gamma terkuantisasi terendah.
- gamma_max: Nilai yang diwakili oleh gamma terkuantisasi tertinggi.
- variance_epsilon: Angka float kecil untuk menghindari pembagian dengan 0.
- scale_after_normalization: Bool yang menunjukkan apakah tensor yang dihasilkan perlu dikalikan dengan gamma.
Pengembalian:
Konstruktor dan Destruktor |
---|
QuantizedBatchNormWithGlobalNormalization (const :: tensorflow::Scope & scope, :: tensorflow::Input t, :: tensorflow::Input t_min, :: tensorflow::Input t_max, :: tensorflow::Input m, :: tensorflow::Input m_min, :: tensorflow::Input m_max, :: tensorflow::Input v, :: tensorflow::Input v_min, :: tensorflow::Input v_max, :: tensorflow::Input beta, :: tensorflow::Input beta_min, :: tensorflow::Input beta_max, :: tensorflow::Input gamma, :: tensorflow::Input gamma_min, :: tensorflow::Input gamma_max, DataType out_type, float variance_epsilon, bool scale_after_normalization) |
Atribut publik
Fungsi publik
QuantizedBatchNormDenganNormalisasi Global
QuantizedBatchNormWithGlobalNormalization(
const ::tensorflow::Scope & scope,
::tensorflow::Input t,
::tensorflow::Input t_min,
::tensorflow::Input t_max,
::tensorflow::Input m,
::tensorflow::Input m_min,
::tensorflow::Input m_max,
::tensorflow::Input v,
::tensorflow::Input v_min,
::tensorflow::Input v_max,
::tensorflow::Input beta,
::tensorflow::Input beta_min,
::tensorflow::Input beta_max,
::tensorflow::Input gamma,
::tensorflow::Input gamma_min,
::tensorflow::Input gamma_max,
DataType out_type,
float variance_epsilon,
bool scale_after_normalization
)
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::QuantizedBatchNormWithGlobalNormalization Class Reference\n\ntensorflow::ops::QuantizedBatchNormWithGlobalNormalization\n==========================================================\n\n`#include \u003cnn_ops.h\u003e`\n\nQuantized Batch normalization.\n\nSummary\n-------\n\nThis op is deprecated and will be removed in the future. Prefer `tf.nn.batch_normalization`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- t: A 4D input [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n- t_min: The value represented by the lowest quantized input.\n- t_max: The value represented by the highest quantized input.\n- m: A 1D mean [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof.\n- m_min: The value represented by the lowest quantized mean.\n- m_max: The value represented by the highest quantized mean.\n- v: A 1D variance [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof.\n- v_min: The value represented by the lowest quantized variance.\n- v_max: The value represented by the highest quantized variance.\n- beta: A 1D beta [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. An offset to be added to the normalized tensor.\n- beta_min: The value represented by the lowest quantized offset.\n- beta_max: The value represented by the highest quantized offset.\n- gamma: A 1D gamma [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. If \"scale_after_normalization\" is true, this tensor will be multiplied with the normalized tensor.\n- gamma_min: The value represented by the lowest quantized gamma.\n- gamma_max: The value represented by the highest quantized gamma.\n- variance_epsilon: A small float number to avoid dividing by 0.\n- scale_after_normalization: A bool indicating whether the resulted tensor needs to be multiplied with gamma.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result_min\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result_max\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [QuantizedBatchNormWithGlobalNormalization](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a06c79c043a3a55b798944a5ae0a0f148)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t_min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t_max, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m_min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m_max, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v_min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v_max, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta_min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta_max, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma_min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma_max, DataType out_type, float variance_epsilon, bool scale_after_normalization)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a84804acca133131cda9e9235b954f9af) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [result](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1ab4d42bdea55b03a105681930993cf3d4) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [result_max](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1aacfdd86eadc8f7972ff620b36692ef19) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [result_min](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a608925a87be94416e98c14506e98fb64) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### result\n\n```text\n::tensorflow::Output result\n``` \n\n### result_max\n\n```scdoc\n::tensorflow::Output result_max\n``` \n\n### result_min\n\n```scdoc\n::tensorflow::Output result_min\n``` \n\nPublic functions\n----------------\n\n### QuantizedBatchNormWithGlobalNormalization\n\n```gdscript\n QuantizedBatchNormWithGlobalNormalization(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input t,\n ::tensorflow::Input t_min,\n ::tensorflow::Input t_max,\n ::tensorflow::Input m,\n ::tensorflow::Input m_min,\n ::tensorflow::Input m_max,\n ::tensorflow::Input v,\n ::tensorflow::Input v_min,\n ::tensorflow::Input v_max,\n ::tensorflow::Input beta,\n ::tensorflow::Input beta_min,\n ::tensorflow::Input beta_max,\n ::tensorflow::Input gamma,\n ::tensorflow::Input gamma_min,\n ::tensorflow::Input gamma_max,\n DataType out_type,\n float variance_epsilon,\n bool scale_after_normalization\n)\n```"]]