Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: Susun Ulang Jarang
#include <sparse_ops.h>
Menyusun ulang SparseTensor ke dalam pengurutan baris-mayor kanonik.
Ringkasan
Perhatikan bahwa berdasarkan konvensi, semua operasi renggang mempertahankan urutan kanonik seiring bertambahnya jumlah dimensi. Satu-satunya waktu pemesanan dapat dilanggar adalah selama manipulasi manual indeks dan nilai vektor untuk menambahkan entri.
Penataan ulang tidak memengaruhi bentuk SparseTensor.
Jika tensor memiliki rank R
dan N
nilai yang tidak kosong, input_indices
memiliki bentuk [N, R]
, input_values memiliki panjang N
, dan input_shape memiliki panjang R
.
Argumen:
- ruang lingkup: Objek Lingkup
- masukan_indeks: 2-D. Matriks
N x R
dengan indeks nilai tidak kosong dalam SparseTensor, mungkin tidak dalam urutan kanonik. - nilai_masukan: 1-D.
N
nilai tidak kosong yang sesuai dengan input_indices
. - bentuk_masukan: 1-D. Bentuk masukan SparseTensor.
Pengembalian:
-
Output
keluaran_indeks: 2-D. Matriks N x R
dengan indeks yang sama dengan indeks_input, tetapi dalam urutan baris-utama kanonik. - Nilai keluaran
Output
: 1-D. N
nilai tidak kosong yang sesuai dengan output_indices
.
Atribut publik
Fungsi publik
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::SparseReorder Class Reference\n\ntensorflow::ops::SparseReorder\n==============================\n\n`#include \u003csparse_ops.h\u003e`\n\nReorders a SparseTensor into the canonical, row-major ordering.\n\nSummary\n-------\n\nNote that by convention, all sparse ops preserve the canonical ordering along increasing dimension number. The only time ordering can be violated is during manual manipulation of the indices and values vectors to add entries.\n\nReordering does not affect the shape of the SparseTensor.\n\nIf the tensor has rank `R` and `N` non-empty values, `input_indices` has shape `[N, R]`, input_values has length `N`, and input_shape has length `R`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering.\n- input_values: 1-D. `N` non-empty values corresponding to `input_indices`.\n- input_shape: 1-D. Shape of the input SparseTensor.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_indices: 2-D. `N x R` matrix with the same indices as input_indices, but in canonical row-major ordering.\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_values: 1-D. `N` non-empty values corresponding to `output_indices`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseReorder](#classtensorflow_1_1ops_1_1_sparse_reorder_1aafcce71e6de3ad9b8ce9618fe3b636a0)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_values, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_shape)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_reorder_1adbdca22d516880fc4093b79caf22bad3) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_reorder_1af583efc1f49452eefa81d966158fd3b6) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_reorder_1ad573d2b883ff9fa37df6b1ae4bc4ec18) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::Output output_indices\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::Output output_values\n``` \n\nPublic functions\n----------------\n\n### SparseReorder\n\n```gdscript\n SparseReorder(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_indices,\n ::tensorflow::Input input_values,\n ::tensorflow::Input input_shape\n)\n```"]]